Hyperoctahedral groupIn mathematics, a hyperoctahedral group is an important type of group that can be realized as the group of symmetries of a hypercube or of a cross-polytope. It was named by Alfred Young in 1930. Groups of this type are identified by a parameter n, the dimension of the hypercube. As a Coxeter group it is of type B_n = C_n, and as a Weyl group it is associated to the symplectic groups and with the orthogonal groups in odd dimensions. As a wreath product it is where S_n is the symmetric group of degree n.
Generalized permutation matrixIn mathematics, a generalized permutation matrix (or monomial matrix) is a matrix with the same nonzero pattern as a permutation matrix, i.e. there is exactly one nonzero entry in each row and each column. Unlike a permutation matrix, where the nonzero entry must be 1, in a generalized permutation matrix the nonzero entry can be any nonzero value. An example of a generalized permutation matrix is An invertible matrix A is a generalized permutation matrix if and only if it can be written as a product of an invertible diagonal matrix D and an (implicitly invertible) permutation matrix P: i.
Growth rate (group theory)In the mathematical subject of geometric group theory, the growth rate of a group with respect to a symmetric generating set describes how fast a group grows. Every element in the group can be written as a product of generators, and the growth rate counts the number of elements that can be written as a product of length n. Suppose G is a finitely generated group; and T is a finite symmetric set of generators (symmetric means that if then ).
ApeirogoneEn géométrie, un apeirogone (du "ἄπειρος" apeiros : infini, sans bornes, et "γωνία" gonia : angle) est un polygone généralisé ayant un nombre infini (dénombrable) de côtés. Le plus souvent, le terme désigne un polygone régulier convexe (tous les angles et tous les côtés sont égaux, et les côtés ne se croisent pas) ; il n'existe pas à ce sens d'apeirogone non trivial en géométrie euclidienne, mais il y en a plusieurs familles (non semblables les unes aux autres) en géométrie hyperbolique. H. S. M.
Quadruplet premierEn théorie des nombres, un quadruplet premier est une suite de quatre nombres premiers consécutifs de la forme (p, p+2, p+6, p+8). C'est la seule forme possible pour quatre nombres premiers consécutifs d'écarts entre eux minimaux, en dehors des quadruplets (2,3,5,7) et (3,5,7,11). Par exemple (5, 7, 11, 13) et (11, 13, 17, 19) sont des quadruplets premiers. Un quadruplet de nombres premiers impairs consécutifs a un écart entre le plus petit et le plus grand de ces nombres d'au moins 6, il ne peut être de 6 car le seul triplet de nombres premiers consécutifs de la forme (p, p+2, p+4) est (3, 5, 7) (voir triplet premier).