Type systemIn computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type (for example, integer, floating point, string) to every "term" (a word, phrase, or other set of symbols). Usually the terms are various constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term.
Logique de HoareLa logique de Hoare, parfois appelée logique de Floyd-Hoare, est une méthode formelle définie par le chercheur en informatique britannique Tony Hoare dans un article de 1969 intitulé An Axiomatic Basis for Computer Programming. La méthode de Hoare met en place un formalisme logique permettant de raisonner sur la correction des programmes informatiques. Elle est fondée sur la syntaxe en ce sens que la correction d'un programme est décrite et démontrée par induction (récurrence) sur la structure du programme : à chaque règle syntaxique de construction d'un programme correspond une règle de la logique de Hoare.
Vérification de modèlesthumb|308x308px|Principe du model checking. En informatique, la vérification de modèles, ou model checking en anglais, est le problème suivant : vérifier si le modèle d'un système (souvent informatique ou électronique) satisfait une propriété. Par exemple, on souhaite vérifier qu'un programme ne se bloque pas, qu'une variable n'est jamais nulle, etc. Généralement, la propriété est écrite dans un langage, souvent en logique temporelle. La vérification est généralement faite de manière automatique.
Entier (informatique)En informatique, un entier est un type de donnée qui représente un sous-ensemble fini de nombres entiers relatifs. On utilise aussi le terme type de données entières (integral type data). Un type de donnée est la nature des valeurs que peut prendre une donnée. Certains traitements comme le recensement des États-Unis ont d'abord été effectués en utilisant une représentation décimale à l'aide de cartes perforées. Le système décimal utilise dix chiffres (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) et où leur position correspond à une puissance de 10 (1, 10, 100, 1000, etc.
Signed number representationsIn computing, signed number representations are required to encode negative numbers in binary number systems. In mathematics, negative numbers in any base are represented by prefixing them with a minus sign ("−"). However, in RAM or CPU registers, numbers are represented only as sequences of bits, without extra symbols. The four best-known methods of extending the binary numeral system to represent signed numbers are: sign–magnitude, ones' complement, two's complement, and offset binary.
Partition d'un entierEn mathématiques, une partition d'un entier (parfois aussi appelée partage d'un entier) est une décomposition de cet entier en une somme d'entiers strictement positifs (appelés parties ou sommants), à l'ordre près des termes (à la différence du problème de composition tenant compte de l'ordre des termes). Une telle partition est en général représentée par la suite des termes de la somme, rangés par ordre décroissant. Elle est visualisée à l'aide de son diagramme de Ferrers, qui met en évidence la notion de partition duale ou conjuguée.
Software verificationSoftware verification is a discipline of software engineering, programming languages, and theory of computation whose goal is to assure that software satisfies the expected requirements. A broad definition of verification makes it related to software testing. In that case, there are two fundamental approaches to verification: Dynamic verification, also known as experimentation, dynamic testing or, simply testing. - This is good for finding faults (software bugs).
Représentations du groupe symétriqueEn mathématiques les représentations du groupe symétrique sont un exemple d'application de la théorie des représentations d'un groupe fini. L'analyse de ces représentations est une illustration des concepts comme le théorème de Maschke, les caractères, la représentation régulière, les représentations induites et la réciprocité de Frobenius. L'histoire des représentations du groupe symétrique et du groupe alterné associés, joue un rôle particulier pour la théorie des caractères.
Théorie des représentations d'un groupe finivignette|Ferdinand Georg Frobenius, fondateur de la théorie de la représentation des groupes. En mathématiques et plus précisément en théorie des groupes, la théorie des représentations d'un groupe fini traite des représentations d'un groupe G dans le cas particulier où G est un groupe fini. Cet article traite de l'aspect mathématique et, de même que l'article de synthèse « Représentations d'un groupe fini », n'aborde que les représentations linéaires de G (par opposition aux représentations projectives ou ).