Demi-groupeEn mathématiques, plus précisément en algèbre générale, un demi-groupe (ou semi-groupe) est une structure algébrique constituée d'un ensemble muni d'une loi de composition interne associative. Il est dit commutatif si sa loi est de plus commutative. Un demi-groupe est un magma associatif. Un monoïde est un demi-groupe unifère, c'est-à-dire possédant un élément neutre. L'ensemble des entiers naturels non nuls muni de l'addition est un demi-groupe. Tout monoïde est un demi-groupe. Tout groupe est un demi-groupe.
Monogenic semigroupIn mathematics, a monogenic semigroup is a semigroup generated by a single element. Monogenic semigroups are also called cyclic semigroups. The monogenic semigroup generated by the singleton set {a} is denoted by . The set of elements of is {a, a2, a3, ...}. There are two possibilities for the monogenic semigroup : am = an ⇒ m = n. There exist m ≠ n such that am = an. In the former case is isomorphic to the semigroup ({1, 2, ...}, +) of natural numbers under addition.
Semigroup with involutionIn mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: uniqueness, double application "cancelling itself out", and the same interaction law with the binary operation as in the case of the group inverse.
Empty semigroupIn mathematics, a semigroup with no elements (the empty semigroup) is a semigroup in which the underlying set is the empty set. Many authors do not admit the existence of such a semigroup. For them a semigroup is by definition a non-empty set together with an associative binary operation. However not all authors insist on the underlying set of a semigroup being non-empty. One can logically define a semigroup in which the underlying set S is empty. The binary operation in the semigroup is the empty function from S × S to S.
Special classes of semigroupsIn mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists of all those semigroups in which the binary operation satisfies the commutativity property that ab = ba for all elements a and b in the semigroup. The class of finite semigroups consists of those semigroups for which the underlying set has finite cardinality.
Machine de MealyEn informatique théorique, notamment en théorie des automates, et en théorie de la calculabilité, une machine de Mealy ou automate de Mealy est un transducteur fini (i.e. un automate fini avec une sortie) pour lequel les sorties dépendent à la fois de l'état courant et des symboles d'entrée. Cela signifie que l'étiquette de chaque transition est un couple formé d'une lettre d'entrée et d'une lettre de sortie. En particulier, la longueur du mot de sortie est égale à la longueur du mot d'entrée.
Machine de Moorethumb|Le diagramme états-transitions d'une machine de Moore avec une fonction de transition partielle. Les entrées sont x, y, z, et les sorties a, b, c. En informatique théorique, notamment en théorie des automates, et en théorie de la calculabilité, une machine de Moore ou automate de Moore (proposée par Edward F. Moore) est un transducteur fini (i.e. un automate fini avec une sortie) pour lequel les sorties ne dépendent que de l'état courant. Cela signifie que chaque état est doté d'une lettre de sortie.
Automate finithumb|upright=2|Fig. 1 : Une hiérarchie d'automates. Un automate fini ou automate avec un nombre fini d'états (en anglais finite-state automaton ou finite state machine ou FSM) est un modèle mathématique de calcul, utilisé dans de nombreuses circonstances, allant de la conception de programmes informatiques et de circuits en logique séquentielle aux applications dans des protocoles de communication, en passant par le contrôle des processus, la linguistique et même la biologie.
Null semigroupIn mathematics, a null semigroup (also called a zero semigroup) is a semigroup with an absorbing element, called zero, in which the product of any two elements is zero. If every element of a semigroup is a left zero then the semigroup is called a left zero semigroup; a right zero semigroup is defined analogously. According to Clifford and Preston, "In spite of their triviality, these semigroups arise naturally in a number of investigations." Let S be a semigroup with zero element 0.
Idéal maximalUn idéal maximal est un concept associé à la théorie des anneaux en mathématiques et plus précisément en algèbre. Un idéal d'un anneau commutatif est dit maximal lorsqu’il est contenu dans exactement deux idéaux, lui-même et l'anneau tout entier. L'existence d'idéaux maximaux est assurée par le théorème de Krull. Cette définition permet de généraliser la notion d’élément irréductible à des anneaux différents de celui des entiers relatifs. Certains de ces anneaux ont un rôle important en théorie algébrique des nombres et en géométrie algébrique.