Connected relationIn mathematics, a relation on a set is called connected or complete or total if it relates (or "compares") all pairs of elements of the set in one direction or the other while it is called strongly connected if it relates pairs of elements. As described in the terminology section below, the terminology for these properties is not uniform. This notion of "total" should not be confused with that of a total relation in the sense that for all there is a so that (see serial relation).
Relation (mathématiques)Une relation entre objets mathématiques d'un certain domaine est une propriété qu'ont, ou non, entre eux certains de ces objets ; ainsi la relation d'ordre strict, notée « < », définie sur N l'ensemble des entiers naturels : 1 < 2 signifie que 1 est en relation avec 2 par cette relation, et on sait que 1 n'est pas en relation avec 0 par celle-ci. Une relation est très souvent une relation binaire, définie sur un ensemble comme la relation d'ordre strict sur N, ou entre deux ensembles.
Programmation fonctionnelleLa programmation fonctionnelle est un paradigme de programmation de type déclaratif qui considère le calcul en tant qu'évaluation de fonctions mathématiques. Comme le changement d'état et la mutation des données ne peuvent pas être représentés par des évaluations de fonctions la programmation fonctionnelle ne les admet pas, au contraire elle met en avant l'application des fonctions, contrairement au modèle de programmation impérative qui met en avant les changements d'état.
Déduction naturelleEn logique mathématique, la déduction naturelle est un système formel où les règles de déduction des démonstrations sont proches des façons naturelles de raisonner. C'est une étape importante de l'histoire de la théorie de la démonstration pour plusieurs raisons : contrairement aux systèmes à la Hilbert fondés sur des listes d'axiomes logiques plus ou moins ad hoc, la déduction naturelle repose sur un principe systématique de symétrie : pour chaque connecteur, on donne une paire de règles duales (introduction/élimination) ; elle a conduit Gentzen à inventer un autre formalisme très important en théorie de la démonstration, encore plus « symétrique » : le calcul des séquents ; elle a permis dans les années 1960 d'identifier la première instance de l'isomorphisme de Curry-Howard.
Synthèse peptidiqueEn chimie organique, la synthèse peptidique est la production de peptides, des composés organiques, dans lesquels des acides aminés sont liés par l'intermédiaire de liaisons amide, qui dans ce cas prennent le nom de liaisons peptidiques. Le processus biologique de la production de peptides longs (protéines) est connu comme la biosynthèse des protéines. Les peptides sont synthétisés par le couplage du groupe carboxyle d'un acide aminé avec le groupe amino de l'acide aminé suivant dans la molécule.
Corps réel closEn mathématiques, un corps réel clos est un corps totalement ordonnable dont aucune extension algébrique propre n'est totalement ordonnable. Les corps suivants sont réels clos : le corps des réels, le sous-corps des réels algébriques, le corps des réels calculables (au sens de Turing), le corps des , le corps des séries de Puiseux à coefficients réels, tout corps superréel (en particulier tout corps hyperréel).
Total relationIn mathematics, a binary relation R ⊆ X×Y between two sets X and Y is total (or left total) if the source set X equals the domain {x : there is a y with xRy }. Conversely, R is called right total if Y equals the range {y : there is an x with xRy }. When f: X → Y is a function, the domain of f is all of X, hence f is a total relation. On the other hand, if f is a partial function, then the domain may be a proper subset of X, in which case f is not a total relation.
Synthèse sonore additivethumb|Synthèse additive d'une onde triangulaire. thumb|Synthèse additive d'une onde en dents de scie. thumb|Synthèse additive d'une onde carrée. La synthèse sonore additive consiste à créer un son en additionnant des signaux sinusoïdaux appelés harmoniques. Depuis Joseph Fourier, on sait qu'un signal périodique peut être décomposé en somme de sinus et cosinus, de fréquences multiples de la fréquence fondamentale du signal.
Relation inverseIn mathematics, the converse relation, or transpose, of a binary relation is the relation that occurs when the order of the elements is switched in the relation. For example, the converse of the relation 'child of' is the relation 'parent of'. In formal terms, if and are sets and is a relation from to then is the relation defined so that if and only if In set-builder notation, The notation is analogous with that for an inverse function. Although many functions do not have an inverse, every relation does have a unique converse.
Variable localeEn programmation informatique, une variable locale est une variable qui ne peut être utilisée que dans la fonction ou le bloc où elle est définie. La variable locale s'oppose à la variable globale qui peut être utilisée dans tout le programme. Selon le langage utilisé, une variable locale à une fonction sera accessible ou non aux fonctions que celle-ci appelle (notion de portée d'une variable ; voir aussi la notion de « fief » en Algol 68).