Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Champ aléatoire conditionnelLes champs aléatoires conditionnels (conditional random fields ou CRFs) sont une classe de modèles statistiques utilisés en reconnaissance des formes et plus généralement en apprentissage statistique. Les CRFs permettent de prendre en compte l'interaction de variables « voisines ». Ils sont souvent utilisés pour des données séquentielles (langage naturel, séquences biologiques, vision par ordinateur). Les CRFs sont un exemple de réseau probabiliste non orienté.
Régression multivariée par spline adaptativeLa Régression multivariée par spline adaptative (en anglais MARS pour ) est une méthode statistique ; plus précisément, c'est une forme de modèle de régression présentée pour la première fois par Jerome H. Friedman et Bernard Silverman en 1991. C'est une technique de régression non paramétrique pouvant être vue comme une extension des régressions linéaires qui modélisent automatiquement des interactions et des non-linéarités. Le terme MARS est une marque de Salford Systems.
Noyau (statistiques)Un noyau est une fonction de pondération utilisée dans les techniques d'estimation non-paramétrique. Les noyaux interviennent dans l'estimateur par noyau pour estimer la densité de probabilité d'une variable aléatoire, ou encore dans la régression paramétrique (à noyau) pour estimer des espérances conditionnelles. Pour les séries temporelles, le noyau permet d'estimer la densité spectrale. Un noyau est une fonction positive, intégrable et à valeurs réelles, notée K, qui doit vérifier les deux conditions suivantes : normalisation : symétrie : pour toutes les valeurs de u.
Linear least squaresLinear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods. The three main linear least squares formulations are: Ordinary least squares (OLS) is the most common estimator.
Semiparametric modelIn statistics, a semiparametric model is a statistical model that has parametric and nonparametric components. A statistical model is a parameterized family of distributions: indexed by a parameter . A parametric model is a model in which the indexing parameter is a vector in -dimensional Euclidean space, for some nonnegative integer . Thus, is finite-dimensional, and . With a nonparametric model, the set of possible values of the parameter is a subset of some space , which is not necessarily finite-dimensional.
Astuce du noyauEn apprentissage automatique, l'astuce du noyau, ou kernel trick en anglais, est une méthode qui permet d'utiliser un classifieur linéaire pour résoudre un problème non linéaire. L'idée est de transformer l'espace de représentation des données d'entrées en un espace de plus grande dimension, où un classifieur linéaire peut être utilisé et obtenir de bonnes performances. La discrimination linéaire dans l'espace de grande dimension (appelé aussi espace de redescription) est équivalente à une discrimination non linéaire dans l'espace d'origine.
Propagation des convictionsLa propagation des convictions (Belief Propagation ou BP en anglais), aussi connu comme la transmission de message somme-produit, est un algorithme à passage de message pour effectuer des inférences sur des modèles graphiques, tels que les réseaux Bayésiens et les champs de Markov. Il calcule la distribution marginale de chaque nœud « non-observé » conditionnée sur les nœuds observés.
Variable latenteIn statistics, latent variables (from Latin: present participle of lateo, “lie hidden”) are variables that can only be inferred indirectly through a mathematical model from other observable variables that can be directly observed or measured. Such latent variable models are used in many disciplines, including political science, demography, engineering, medicine, ecology, physics, machine learning/artificial intelligence, bioinformatics, chemometrics, natural language processing, management, psychology and the social sciences.
Régression (statistiques)En mathématiques, la régression recouvre plusieurs méthodes d’analyse statistique permettant d’approcher une variable à partir d’autres qui lui sont corrélées. Par extension, le terme est aussi utilisé pour certaines méthodes d’ajustement de courbe. En apprentissage automatique, on distingue les problèmes de régression des problèmes de classification. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.