Hermitian symmetric spaceIn mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds. Every Hermitian symmetric space is a homogeneous space for its isometry group and has a unique decomposition as a product of irreducible spaces and a Euclidean space.
Processus stationnairePour accéder aux propriétés essentielles d'un signal physique il peut être commode de le considérer comme une réalisation d'un processus aléatoire (voir quelques précisions dans Processus continu). Le problème est largement simplifié si le processus associé au signal peut être considéré comme un processus stationnaire, c'est-à-dire si ses propriétés statistiques caractérisées par des espérances mathématiques sont indépendantes du temps.
Transportvignette|alt=Une planche du Larousse universel de 1922 illustrant les modes de transport|Une planche illustrant les modes de transport (Larousse universel en 2 volumes, 1922). vignette|Le réseau routier de transport automobile est confronté aux fleuves et petits bras de mer qui peuvent être traversés par de grands ponts, des tunnels, des bacs ou des ferrys. vignette|L'avion est un mode de transport en très forte croissance depuis la seconde moitié du , mais dont les impacts écologiques et climatiques sont importants ( à raison de de kérosène, les vols intra-européens émettent environ par an en 2007.
Multivariate kernel density estimationKernel density estimation is a nonparametric technique for density estimation i.e., estimation of probability density functions, which is one of the fundamental questions in statistics. It can be viewed as a generalisation of histogram density estimation with improved statistical properties. Apart from histograms, other types of density estimators include parametric, spline, wavelet and Fourier series. Kernel density estimators were first introduced in the scientific literature for univariate data in the 1950s and 1960s and subsequently have been widely adopted.
Identités logarithmiquesCet article dresse une liste d'identités utiles lorsqu'on travaille avec les logarithmes. Ces identités sont toutes valables à condition que les réels utilisés (, , et ) soient strictement positifs. En outre, les bases des logarithmes doivent être différentes de 1. Pour toute base , on a : Par définition des logarithmes, on a : Ces trois identités permettent d'utiliser des tables de logarithme et des règles à calcul ; connaissant le logarithme de deux nombres, il est possible de les multiplier et diviser rapidement, ou aussi bien calculer des puissances ou des racines de ceux-ci.
Cum hoc ergo propter hocCum hoc ergo propter hoc (latin signifiant avec ceci, donc à cause de ceci) est un sophisme qui consiste à prétendre que si deux événements sont corrélés, alors, il y a un lien de cause à effet entre les deux. La confusion entre corrélation et causalité est appelée effet cigogne en zététique (en référence à la corrélation trompeuse entre le nombre de nids de cigognes et celui des naissances humaines) ; en science et particulièrement en statistique cette erreur est rappelée par la phrase « la corrélation n'implique pas la causalité », en latin : cum hoc sed non propter hoc (avec ceci, cependant pas à cause de ceci).
Taille d'effetEn statistique, une taille d'effet est une mesure de la force de l'effet observé d'une variable sur une autre et plus généralement d'une inférence. La taille d'un effet est donc une grandeur statistique descriptive calculée à partir de données observées empiriquement afin de fournir un indice quantitatif de la force de la relation entre les variables et non une statistique inférentielle qui permettrait de conclure ou non si ladite relation observée dans les données existe bien dans la réalité.
Processus stochastiqueUn processus ou processus aléatoire (voir Calcul stochastique) ou fonction aléatoire (voir Probabilité) représente une évolution, discrète ou à temps continu, d'une variable aléatoire. Celle-ci intervient dans le calcul classique des probabilités, où elle mesure chaque résultat possible (ou réalisation) d'une épreuve. Cette notion se généralise à plusieurs dimensions. Un cas particulier important, le champ aléatoire de Markov, est utilisé en analyse spatiale.
Spatial cognitionSpatial cognition is the acquisition, organization, utilization, and revision of knowledge about spatial environments. It is most about how animals including humans behave within space and the knowledge they built around it, rather than space itself. These capabilities enable individuals to manage basic and high-level cognitive tasks in everyday life. Numerous disciplines (such as cognitive psychology, neuroscience, artificial intelligence, geographic information science, cartography, etc.
Rank correlationIn statistics, a rank correlation is any of several statistics that measure an ordinal association—the relationship between rankings of different ordinal variables or different rankings of the same variable, where a "ranking" is the assignment of the ordering labels "first", "second", "third", etc. to different observations of a particular variable. A rank correlation coefficient measures the degree of similarity between two rankings, and can be used to assess the significance of the relation between them.