Earthquake-resistant structuresEarthquake-resistant or aseismic structures are designed to protect buildings to some or greater extent from earthquakes. While no structure can be entirely impervious to earthquake damage, the goal of earthquake engineering is to erect structures that fare better during seismic activity than their conventional counterparts. According to building codes, earthquake-resistant structures are intended to withstand the largest earthquake of a certain probability that is likely to occur at their location.
Trame (informatique)Dans les réseaux informatiques, une trame (en anglais, frame) est la structure de base d'un ensemble de données encadré par des bits de début et des bits de fin appelés drapeau, fanion. C'est l'unité de mesure, le PDU de la couche 2 (couche Liaison de données) dans le modèle OSI. Une trame est composée d'un header, des données que l'on veut transmettre, et d'un postambule (trailer). Un paquet (dans le cas d'IP par exemple) ne peut transiter directement sur un réseau : il est encapsulé comme données à l'intérieur d'une trame qui elle-même finit en un enchaînement de bits qui circule sur le support physique.
Magnitude de momentL'échelle de magnitude de moment est une des échelles logarithmiques qui mesurent la magnitude d'un séisme, c'est-à-dire la « taille » d'un séisme proportionnelle à l'énergie sismique dégagée. Centrée sur les basses fréquences des ondes sismiques, elle quantifie précisément l'énergie émise par le séisme. Elle ne présente pas de saturation pour les plus grands événements, dont la magnitude peut être sous-évaluée par d'autres échelles, faussant ainsi les dispositifs d'alerte rapide essentiels pour la protection des populations.
Espace localement simplement connexeEn mathématiques, un espace localement simplement connexe est un espace topologique qui admet une base d'ouverts simplement connexes. Tout espace localement simplement connexe est donc localement connexe par arcs et a fortiori localement connexe. Le cercle est localement simplement connexe mais pas simplement connexe. La boucle d'oreille hawaïenne n'est pas localement simplement connexe ni simplement connexe, puisqu'elle n'est même pas . Le cône de la boucle d'oreille hawaïenne est contractile donc simplement connexe, mais n'est pas localement simplement connexe.
Série entièreEn mathématiques et particulièrement en analyse, une série entière est une série de fonctions de la forme où les coefficients a forment une suite réelle ou complexe. Une explication de ce terme est qu'. Les séries entières possèdent des propriétés de convergence remarquables, qui s'expriment pour la plupart à l'aide de son rayon de convergence R, grandeur associée à la série. Sur le disque de convergence (disque ouvert de centre 0 et de rayon R), la fonction somme de la série peut être dérivée indéfiniment terme à terme.
Référentiel barycentriqueEn physique, le référentiel barycentrique, appelé aussi référentiel du centre de masse, est un référentiel en translation (par rapport à un référentiel galiléen de référence) dans lequel le centre d'inertie du système étudié est immobile. La translation du référentiel barycentrique ne signifie pas que c'est une translation rectiligne. Par exemple, une cabine de grande roue de fête foraine, quand elle tourne, est en mouvement de translation circulaire et elle se comporte comme le référentiel barycentrique de la Lune qui, elle, est en mouvement de rotation dans le référentiel géocentrique.
Local reference frameIn theoretical physics, a local reference frame (local frame) refers to a coordinate system or frame of reference that is only expected to function over a small region or a restricted region of space or spacetime. The term is most often used in the context of the application of local inertial frames to small regions of a gravitational field.
Madhava seriesIn mathematics, a Madhava series is one of the three Taylor series expansions for the sine, cosine, and arctangent functions discovered in 14th or 15th century Kerala by the mathematician and astronomer Madhava of Sangamagrama (c. 1350 – c. 1425) or his followers in the Kerala school of astronomy and mathematics. Using modern notation, these series are: All three series were later independently discovered in 17th century Europe.
Connexité (mathématiques)La connexité est une notion de topologie qui formalise le concept d'« objet d'un seul tenant ». Un objet est dit connexe s'il est fait d'un seul « morceau ». Dans le cas contraire, chacun des morceaux est une composante connexe de l'objet étudié. Soit un espace topologique E. Les quatre propositions suivantes sont équivalentes : E n'est pas la réunion de deux ouverts non vides disjoints ; E n'est pas la réunion de deux fermés non vides disjoints ; les seuls ouverts-fermés de E sont ∅ et E ; toute application continue de E dans un ensemble à deux éléments muni de la topologie discrète est constante.
N-connexitéDans le domaine mathématique de la topologie algébrique et plus précisément en théorie de l'homotopie, la n-connexité est une généralisation de la connexité par arcs (cas n = 0) et de la connexité simple (cas n = 1) : un espace topologique est dit n-connexe si son homotopie est triviale jusqu'au degré n et une application continue est n-connexe si elle induit des isomorphismes en homotopie « presque » jusqu'au degré n. Pour tout entier naturel n, un espace X est dit n-connexe s'il est connexe par arcs et si ses n premiers groupes d'homotopie π(X) (0 < k ≤ n) sont triviaux.