In algebraic topology, homotopical connectivity is a property describing a topological space based on the dimension of its holes. In general, low homotopical connectivity indicates that the space has at least one low-dimensional hole. The concept of n-connectedness generalizes the concepts of path-connectedness and simple connectedness. An equivalent definition of homotopical connectivity is based on the homotopy groups of the space. A space is n-connected (or n-simple connected) if its first n homotopy groups are trivial. Homotopical connectivity is defined for maps, too. A map is n-connected if it is an isomorphism "up to dimension n, in homotopy". All definitions below consider a topological space X. A hole in X is, informally, a thing that prevents some suitably-placed sphere from continuously shrinking to a point. Equivalently, it is a sphere that cannot be continuously extended to a ball. Formally, A d-dimensional sphere in X is a continuous function . A d-dimensional ball in X is a continuous function . A d-dimensional-boundary hole in X is a d-dimensional sphere that is not nullhomotopic (- cannot be shrunk continuously to a point). Equivalently, it is a d-dimensional sphere that cannot be continuously extended to a (d+1)-dimensional ball. It is sometimes called a (d+1)-dimensional hole (d+1 is the dimension of the "missing ball"). X is called n-connected if it contains no holes of boundary-dimension d ≤ n. The homotopical connectivity of X, denoted , is the largest integer n for which X is n-connected. A slightly different definition of connectivity, which makes some computations simpler, is: the smallest integer d such that X contains a d-dimensional hole. This connectivity parameter is denoted by , and it differs from the previous parameter by 2, that is, . A 2-dimensional hole (a hole with a 1-dimensional boundary) is a circle (S1) in X, that cannot be shrunk continuously to a point in X. An example is shown on the figure at the right. The yellow region is the topological space X; it is a pentagon with a triangle removed.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.