Produit tensorielEn mathématiques, le produit tensoriel est un moyen commode de coder les objets multilinéaires. Il est utilisé en algèbre, en géométrie différentielle, en géométrie riemannienne, en analyse fonctionnelle et en physique (mécanique des solides, relativité générale et mécanique quantique). Théorème et définition. Soient et deux espaces vectoriels sur un corps commutatif .
Méthode itérativeEn analyse numérique, une méthode itérative est un procédé algorithmique utilisé pour résoudre un problème, par exemple la recherche d’une solution d’un système d'équations ou d’un problème d’optimisation. En débutant par le choix d’un point initial considéré comme une première ébauche de solution, la méthode procède par itérations au cours desquelles elle détermine une succession de solutions approximatives raffinées qui se rapprochent graduellement de la solution cherchée. Les points générés sont appelés des itérés.
Dopage (semi-conducteur)Dans le domaine des semi-conducteurs, le dopage est l'action d'ajouter des impuretés en petites quantités à une substance pure afin de modifier ses propriétés de conductivité. Les propriétés des semi-conducteurs sont en grande partie régies par la quantité de porteurs de charge qu'ils contiennent. Ces porteurs sont les électrons ou les trous. Le dopage d'un matériau consiste à introduire, dans sa matrice, des atomes d'un autre matériau. Ces atomes vont se substituer à certains atomes initiaux et ainsi introduire davantage d'électrons ou de trous.
PlasmonDans un métal, un plasmon est une oscillation de plasma quantifiée, ou un quantum d'oscillation de plasma. Le plasmon est une quasiparticule résultant de la quantification de fréquence plasma, tout comme le photon et le phonon sont des quantifications de vibrations respectivement lumineuses et mécaniques. Ainsi, les plasmons sont des oscillations collectives d'un gaz d'électrons, par exemple à des fréquences optiques. Le couplage d'un plasmon et d'un photon crée une autre quasiparticule dite plasma polariton.
Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.
Magnetic semiconductorMagnetic semiconductors are semiconductor materials that exhibit both ferromagnetism (or a similar response) and useful semiconductor properties. If implemented in devices, these materials could provide a new type of control of conduction. Whereas traditional electronics are based on control of charge carriers (n- or p-type), practical magnetic semiconductors would also allow control of quantum spin state (up or down).
Mixed tensorIn tensor analysis, a mixed tensor is a tensor which is neither strictly covariant nor strictly contravariant; at least one of the indices of a mixed tensor will be a subscript (covariant) and at least one of the indices will be a superscript (contravariant). A mixed tensor of type or valence , also written "type (M, N)", with both M > 0 and N > 0, is a tensor which has M contravariant indices and N covariant indices. Such a tensor can be defined as a linear function which maps an (M + N)-tuple of M one-forms and N vectors to a scalar.
Éléments (Euclide)Les Éléments (en grec ancien / stoïkheïa) est un traité mathématique et géométrique, constitué de 13 livres organisés thématiquement, probablement écrit par le mathématicien grec Euclide vers Il comprend une collection de définitions, axiomes, théorèmes et leur démonstration sur les sujets de la géométrie euclidienne et de la théorie des nombres primitifs. L'ouvrage est le plus ancien exemple connu d'un traitement axiomatique et systématique de la géométrie et son influence sur le développement de la logique et de la science occidentale est fondamentale.
Méthode de JacobiLa méthode de Jacobi, due au mathématicien allemand Karl Jacobi, est une méthode itérative de résolution d'un système matriciel de la forme Ax = b. Pour cela, on utilise une suite x qui converge vers un point fixe x, solution du système d'équations linéaires. On cherche à construire, pour x donné, la suite x = F(x) avec . où est une matrice inversible. où F est une fonction affine. La matrice B = MN est alors appelée matrice de Jacobi.
Convergence uniformeLa convergence uniforme d'une suite de fonctions est une forme de convergence plus exigeante que la convergence simple. La convergence devient uniforme quand toutes les suites avancent vers leur limite respective avec une sorte de « mouvement d'ensemble ». Dans le cas de fonctions numériques d'une variable, la notion prend une forme d'« évidence » géométrique : le graphe de la fonction f se « rapproche » de celui de la limite. Soient X un ensemble, (Y, d) un espace métrique, et A un sous-ensemble de X.