Tétraèdrethumb|Un tétraèdre. thumb|Paul Sérusier, Tétraèdres, vers 1910. En géométrie, les tétraèdres (du grec tétra : quatre) sont des polyèdres de la famille des pyramides, composés de triangulaires, et . Le 3-simplexe est la représentation abstraite du tétraèdre ; dans ce modèle, les arêtes s'identifient aux 6 sous-ensembles à 2 éléments de l'ensemble des quatre sommets, et les faces aux 4 sous-ensembles à 3 éléments. Chaque sommet d'un tétraèdre est relié à tous les autres par une arête, et de même chaque face est reliée à toutes les autres par une arête.
Tensor densityIn differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another (see tensor field), except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A tensor density with a single index is called a vector density.
Composant semi-conducteurvignette|Aperçu de quelques dispositifs semi-conducteurs encapsulés Un composant semi-conducteur est un composant électronique dont le fonctionnement repose sur les propriétés électroniques d'un matériau semi-conducteur (principalement le silicium, le germanium et l'arséniure de gallium, ainsi que des semi-conducteurs organiques). Sa conductivité se situe entre les conducteurs et les isolants. Les composants semi-conducteurs ont remplacé les tubes à vide dans la plupart des applications.
Contraction tensorielleEn algèbre multilinéaire, la contraction est un procédé de calcul sur les tenseurs faisant intervenir la dualité. En coordonnées elle se représente de façon très simple en utilisant les notations d'Einstein et consiste à faire une somme sur un indice muet. Il est possible de contracter un tenseur unique de rang p en un tenseur de rang p-2, par exemple en calculant la trace d'une matrice. Il est possible également de contracter deux tenseurs, ce qui généralise la notion de produit matriciel.
Semi-conducteur à large bandevignette|Schéma d'un semi-conducteur à large bande Un semi-conducteur à large bande est un semi-conducteur dont la largeur de la bande interdite, entre la bande de valence et la bande de conduction, est significativement plus importante que celle du silicium. Le seuil exact dépend du domaine d'utilisation. Commercialement, du fait de ses caractéristiques et de son abondance, le silicium est le semi-conducteur le plus utilisé. Les composants électroniques basés sur le silicium peuvent cependant présenter des limites fonctionnelles.
Champ tensorielEn mathématiques, en physique et en ingénierie, un champ tensoriel est un concept très général de quantité géométrique variable. Il est utilisé en géométrie différentielle et dans la théorie des variétés, en géométrie algébrique, en relativité générale, dans l'analyse des contraintes et de la déformation dans les matériaux, et en de nombreuses applications dans les sciences physiques et dans le génie. C'est une généralisation de l'idée de champ vectoriel, lui-même conçu comme un « vecteur qui varie de point en point », à celle, plus riche, de « tenseur qui varie de point en point ».
Tenseur électromagnétiqueLe tenseur électromagnétique, ou tenseur de Maxwell est le nom de l'objet mathématique décrivant la structure du champ électromagnétique en un point donné. Le tenseur électromagnétique est aussi connu comme : le tenseur d'intensité du champ électromagnétique ; le tenseur du champ magnétique ; le tenseur de Maxwell ; le tenseur de Faraday. Ce tenseur est défini dans le cadre du formalisme mathématique de la relativité restreinte, où aux trois dimensions spatiales est adjointe une dimension temporelle.
Tenseur (mathématiques)Les tenseurs sont des objets mathématiques issus de l'algèbre multilinéaire permettant de généraliser les scalaires et les vecteurs. On les rencontre notamment en analyse vectorielle et en géométrie différentielle fréquemment utilisés au sein de champs de tenseurs. Ils sont aussi utilisés en mécanique des milieux continus. Le présent article ne se consacre qu'aux tenseurs dans des espaces vectoriels de dimension finie, bien que des généralisations en dimension infinie et même pour des modules existent.
Vitesse de convergence des suitesEn analyse numérique — une branche des mathématiques — on peut classer les suites convergentes en fonction de leur vitesse de convergence vers leur point limite. C'est une manière d'apprécier l'efficacité des algorithmes qui les génèrent. Les suites considérées ici sont convergentes sans être stationnaires (tous leurs termes sont même supposés différents du point limite). Si une suite est stationnaire, tous ses éléments sont égaux à partir d'un certain rang et il est alors normal de s'intéresser au nombre d'éléments différents du point limite.
PolaritonLes polaritons sont des quasiparticules issues du couplage fort entre une onde lumineuse et une onde de polarisation électrique. Plusieurs cas de figure sont possibles : L'onde de polarisation est un phonon optique, c’est-à-dire essentiellement l'oscillation mécanique de deux atomes de charge opposée à l'intérieur d'un cristal. Les polaritons phononiques ont été beaucoup étudiés par la spectroscopie Raman dans les années 1970 - 80 et ont permis de mesurer la constante diélectrique à haute fréquence dans les semiconducteurs.