Champ électriquethumb|Champ électrique associé à son propagateur qu'est le photon. right|thumb|Michael Faraday introduisit la notion de champ électrique. En physique, le champ électrique est le champ vectoriel créé par des particules électriquement chargées. Plus précisément, des particules chargées modifient les propriétés locales de l'espace, ce que traduit justement la notion de champ. Si une autre charge se trouve dans ce champ, elle subira l'action de la force électrique exercée à distance par la particule : le champ électrique est en quelque sorte le "médiateur" de cette action à distance.
RétinalLe rétinal, appelé aussi rétinaldéhyde, est l'une des trois formes de la . Le rétinal est un aldéhyde polyinsaturé capable d'absorber la lumière et qui présente une couleur orangée. Il se lie à des protéines, les opsines, et constitue la base moléculaire de la vision. En effet, le cycle de la vision est régi par la photoisomérisation du rétinal : lorsque le rétinal 11-cis absorbe un photon, il passe de l'état 11-cis à l'état tout-trans ; cette isomérisation est à l'origine d'une hyperpolarisation du photorécepteur par .
RhodopsineLa rhodopsine (du grec ῥόδος rhodos, rose, et ὄψομαι opsomai, futur du verbe ὁρῶ orô, voir) ou pourpre rétinien est un pigment protéique photosensible présent dans les bâtonnets, l'un des deux types des cellules photoréceptrices de la rétine (œil des vertébrés, œil composé des arthropodes, ocelles). C'est également un récepteur couplé aux protéines G. Elle est responsable de la sensibilité de l'œil à la lumière. Comme tous les récepteurs couplés aux protéines G, la rhodopsine possède 7 domaines transmembranaires.
Spectroscopie de fluorescenceLa spectroscopie de fluorescence, ou encore fluorimétrie ou spectrofluorimétrie, est un type de spectroscopie électromagnétique qui analyse la fluorescence d'un échantillon. Elle implique l'utilisation d'un rayon de lumière (habituellement dans l'ultraviolet) qui va exciter les électrons des molécules de certains composés et les fait émettre de la lumière de plus basse énergie, typiquement de la lumière visible, mais pas nécessairement. La spectroscopie de fluorescence peut être une spectroscopie atomique ou une spectroscopie moléculaire.
Potentiel électriqueLe potentiel électrique, exprimé en volts (symbole : V), est l'une des grandeurs définissant l'état électrique d'un point de l'espace. Il correspond à l'énergie potentielle électrostatique que posséderait une charge électrique unitaire située en ce point, c'est-à-dire à l'énergie potentielle (mesurée en joules) d'une particule chargée en ce point divisée par la charge (mesurée en coulombs) de la particule.
Champ électromagnétiqueUn champ électromagnétique ou Champ EM (en anglais, electromagnetic field ou EMF) est la représentation dans l'espace de la force électromagnétique qu'exercent des particules chargées. Concept important de l'électromagnétisme, ce champ représente l'ensemble des composantes de la force électromagnétique s'appliquant sur une particule chargée se déplaçant dans un référentiel galiléen. Une particule de charge q et de vecteur vitesse subit une force qui s'exprime par : où est le champ électrique et est le champ magnétique.
Intrinsically photosensitive retinal ganglion cellIntrinsically photosensitive retinal ganglion cells (ipRGCs), also called photosensitive retinal ganglion cells (pRGC), or melanopsin-containing retinal ganglion cells (mRGCs), are a type of neuron in the retina of the mammalian eye. The presence of (something like) ipRGCs was first suspected in 1927 when rodless, coneless mice still responded to a light stimulus through pupil constriction, This implied that rods and cones are not the only light-sensitive neurons in the retina.
Spectrométrie d'absorptionLa spectrométrie d'absorption est une méthode de spectroscopie électromagnétique utilisée pour déterminer la concentration et la structure d'une substance en mesurant l'intensité du rayonnement électromagnétique qu'elle absorbe à des longueurs d'onde différentes. La spectroscopie d'absorption peut être atomique ou moléculaire. Comme indiqué dans le tableau précédent, les rayonnements électromagnétiques exploités en spectroscopie d'absorption moléculaire vont de l'ultraviolet jusqu'aux ondes radio : La couleur d'un corps en transmission (transparence) représente sa capacité à absorber certaines longueurs d'onde.
Induction électriqueEn électromagnétisme, l’induction électrique, notée , représente en quelque sorte la densité de charge par unité d'aire (en ) ressentie en un certain point : par exemple, une sphère de rayon entourant une charge subit à cause d'elle en chacun de ses points un certain champ électrique, identique à celui qu'engendrerait la même charge uniformément répartie sur l'aire de la sphère. La densité de charge surfacique ainsi obtenue est alors l'intensité de l'induction électrique.
Rayonnement électromagnétiquethumb|Répartition du rayonnement électromagnétique par longueur d'onde. Le rayonnement électromagnétique est une forme de transfert d'énergie linéaire. La lumière visible est un rayonnement électromagnétique, mais ne constitue qu'une petite tranche du large spectre électromagnétique. La propagation de ce rayonnement, d'une ou plusieurs particules, donne lieu à de nombreux phénomènes comme l'atténuation, l'absorption, la diffraction et la réfraction, le décalage vers le rouge, les interférences, les échos, les parasites électromagnétiques et les effets biologiques.