Information de FisherEn statistique, l'information de Fisher quantifie l'information relative à un paramètre contenue dans une distribution. Elle est définie comme l'espérance de l'information observée, ou encore comme la variance de la fonction de score. Dans le cas multi-paramétrique, on parle de matrice d'information de Fisher. Elle a été introduite par R.A. Fisher. Soit f(x ; θ) la distribution de vraisemblance d'une variable aléatoire X (qui peut être multidimensionnelle), paramétrée par θ.
Estimation spectraleL'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP). Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories : Modèles autorégressif (AR) Modèles à moyenne ajustée (MA) Modèles autorégressif à moyenne ajustée (ARMA). L'approche paramétrique se décompose en trois étapes : Choisir un modèle décrivant le processus de manière appropriée.
Tests expérimentaux de la relativité généraleLa relativité générale a la réputation d'être une théorie fortement mathématique, qui n'était pas fondée au départ sur des observations. Cependant, même si ses postulats ne sont pas directement testables, elle prédit de nombreux effets observables de déviations par rapport aux théories physiques qui ont précédé. Cette page expose donc les tests expérimentaux de la relativité générale. L'avance du périhélie de Mercure, la courbure des rayons lumineux et le décalage vers le rouge sont les trois tests classiques de la relativité générale qui ont été proposés par Einstein lui-même.
Relevé astronomiquevignette|Image composite du GOODS-South field, recensement astronomique utilisant le Very Large Telescope. Un relevé astronomique est un recensement (survey en anglais) d'objets astronomiques réalisé à l'aide de télescopes et de satellites. Il permet notamment aux astronomes d'établir le catalogue des objets célestes et d'effectuer des analyses statistiques sur ces derniers. Ce type d'approche est idéal pour détecter les mouvements d'objets tels des astéroïdes et des comètes, ainsi que les variations de luminosités d'étoiles variables.
SeeingLe seeing (du verbe anglais to see signifiant « voir »), ou en français la qualité d'image ou la qualité de la visibilité, est une grandeur servant à caractériser la qualité optique du ciel. En pratique, le seeing mesure la turbulence atmosphérique. Avec la transparence du ciel, il est donc un des paramètres utilisés par les astronomes pour mesurer la qualité du ciel et a fortiori des observations astronomiques. Ces deux paramètres dépendent notamment de la température, de la pression, du vent et de l'humidité ainsi que de leurs variations.
Least-squares spectral analysisLeast-squares spectral analysis (LSSA) is a method of estimating a frequency spectrum based on a least-squares fit of sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science, generally boosts long-periodic noise in the long and gapped records; LSSA mitigates such problems. Unlike in Fourier analysis, data need not be equally spaced to use LSSA.
Jeffreys priorIn Bayesian probability, the Jeffreys prior, named after Sir Harold Jeffreys, is a non-informative prior distribution for a parameter space; its density function is proportional to the square root of the determinant of the Fisher information matrix: It has the key feature that it is invariant under a change of coordinates for the parameter vector . That is, the relative probability assigned to a volume of a probability space using a Jeffreys prior will be the same regardless of the parameterization used to define the Jeffreys prior.
Principe d'entropie maximaleLe principe d'entropie maximale consiste, lorsqu'on veut représenter une connaissance imparfaite d'un phénomène par une loi de probabilité, à : identifier les contraintes auxquelles cette distribution doit répondre (moyenne, etc) ; choisir de toutes les distributions répondant à ces contraintes celle ayant la plus grande entropie au sens de Shannon. De toutes ces distributions, c'est en effet celle d'entropie maximale qui contient le moins d'information, et elle est donc pour cette raison la moins arbitraire de toutes celles que l'on pourrait utiliser.
Théorie de l'informationLa théorie de l'information, sans précision, est le nom usuel désignant la théorie de l'information de Shannon, qui est une théorie utilisant les probabilités pour quantifier le contenu moyen en information d'un ensemble de messages, dont le codage informatique satisfait une distribution statistique que l'on pense connaître. Ce domaine trouve son origine scientifique avec Claude Shannon qui en est le père fondateur avec son article A Mathematical Theory of Communication publié en 1948.
Conjugate priorIn Bayesian probability theory, if the posterior distribution is in the same probability distribution family as the prior probability distribution , the prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior for the likelihood function . A conjugate prior is an algebraic convenience, giving a closed-form expression for the posterior; otherwise, numerical integration may be necessary. Further, conjugate priors may give intuition by more transparently showing how a likelihood function updates a prior distribution.