Ingénierie des caractéristiquesL'ingénierie des caractéristiques (en anglais feature engineering) a un rôle important, notamment dans l’analyse des données. Sans données, les algorithmes d’exploitation et d’apprentissage automatique de données ne seront pas en mesure de fonctionner. En effet, il s’avère qu’en réalité, on ne pourrait réaliser que peu de choses si nous ne disposions que de très peu de caractéristiques afin de pouvoir représenter les données, ou les banques de données, sous-jacentes.
Quantification vectorielleLa quantification vectorielle est une technique de quantification souvent utilisée dans la compression de données avec pertes de données (Lossy Data Compression) pour laquelle l'idée de base est de coder ou de remplacer par une clé des valeurs d'un espace vectoriel multidimensionnel vers des valeurs d'un sous-espace discret de plus petite dimension. Le vecteur de plus petit espace nécessite moins d'espace de stockage et les données sont donc compressées.
Feature (computer vision)In computer vision and , a feature is a piece of information about the content of an image; typically about whether a certain region of the image has certain properties. Features may be specific structures in the image such as points, edges or objects. Features may also be the result of a general neighborhood operation or feature detection applied to the image. Other examples of features are related to motion in image sequences, or to shapes defined in terms of curves or boundaries between different image regions.
Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Reconnaissance de l'écriture manuscriteLa reconnaissance de l’écriture manuscrite (en anglais, handwritten text recognition ou HTR) est un traitement informatique qui a pour but de traduire un texte écrit en un texte codé numériquement. Il faut distinguer deux reconnaissances distinctes, avec des problématiques et des solutions différentes : la reconnaissance en-ligne ; la reconnaissance hors-ligne. La reconnaissance de l’écriture manuscrite fait appel à la reconnaissance de forme, mais également au traitement automatique du langage naturel.
Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Réseautage socialalt=Visualisation du réseau social Reddit|vignette|283x283px|Visualisation des interactions entre des utilisateurs du réseau social Reddit durant une discussion en 2017. Le réseautage social est un terme qui se rapporte à l'ensemble des moyens « virtuels » mis en œuvre pour relier des personnes physiques ou personnes morales entre elles. Avec l'apparition d'Internet, il recouvre les applications Web connues sous le nom de « services de réseautage social en ligne », plus couramment appelées « réseaux sociaux ».
Interactionnisme symboliqueL’interactionnisme symbolique est une approche issue de la sociologie américaine qui a subi plusieurs inflexions de ses fondements théoriques depuis son apparition, vers la fin des années 1930. Dans un premier temps, l'émergence du cadre théorique de l'interactionnisme symbolique découle d'une rupture paradigmatique effectuée par George Herbert Mead en psychologie sociale. En effet, Mead se dégage des paradigmes psychologiques dominants de l’époque, le béhaviorisme et la psychanalyse, pour développer une approche inter-relationnelle et coconstructive du sens.
Cloud computingLe cloud computing , en français l'informatique en nuage (ou encore l'infonuagique au Canada), est la pratique consistant à utiliser des serveurs informatiques à distance et hébergés sur internet pour stocker, gérer et traiter des données, plutôt qu'un serveur local ou un ordinateur personnel. Les principaux services proposés en cloud computing sont le SaaS (Software as a Service), le PaaS (Platform as a Service) et le IaaS (Infrastructure as a Service) ou le MBaaS ().
Machine à vecteurs de supportLes machines à vecteurs de support ou séparateurs à vaste marge (en anglais support-vector machine, SVM) sont un ensemble de techniques d'apprentissage supervisé destinées à résoudre des problèmes de discrimination et de régression. Les SVM sont une généralisation des classifieurs linéaires. Les séparateurs à vaste marge ont été développés dans les années 1990 à partir des considérations théoriques de Vladimir Vapnik sur le développement d'une théorie statistique de l'apprentissage : la théorie de Vapnik-Tchervonenkis.