Self-reconfiguring modular robotModular self-reconfiguring robotic systems or self-reconfigurable modular robots are autonomous kinematic machines with variable morphology. Beyond conventional actuation, sensing and control typically found in fixed-morphology robots, self-reconfiguring robots are also able to deliberately change their own shape by rearranging the connectivity of their parts, in order to adapt to new circumstances, perform new tasks, or recover from damage.
Ensemble finiEn mathématiques, un ensemble fini est un ensemble qui possède un nombre fini d'éléments, c'est-à-dire qu'il est possible de compter ses éléments, le résultat étant un nombre entier. Un ensemble infini est un ensemble qui n'est pas fini. Ainsi l'ensemble des chiffres usuels (en base dix) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} qui possède 10 éléments, est fini. De même l'ensemble des lettres de l'alphabet qui possède 26 éléments. L'ensemble de tous les nombres entiers naturels {0, 1, 2, 3,..., 10,..., 100,...
Interaction homme-robotLes interactions humain-robot (Human-Robot Interactions en anglais, ) sont le sujet d'un champ de recherches ayant émergé du contact et de la rencontre entre l'humain et les systèmes robotiques. Il s'agit d'un champ de recherches interdisciplinaires à la frontière entre la robotique, l'ergonomie et la psychologie. Formé par l’assemblage des deux mots « inter » et « action », le terme d’interaction, dans son étymologie même, suggère l’idée d’une action mutuelle, en réciprocité, de plusieurs éléments.
Planification de mouvementLa planification de mouvement (en anglais motion planning) est un ensemble de techniques mathématiques et informatiques permettant de calculer des trajectoires pour un système cinématique, avec pour contrainte l'absence de collision. Il existe deux principales catégories de méthodes pour la planification de mouvement : La première est composée de méthodes dites déterministes, appelées ainsi car elles permettent de retrouver le même chemin à chaque exécution, sous réserve d'avoir des conditions initiales équivalentes.
Hidden attractorIn the bifurcation theory, a bounded oscillation that is born without loss of stability of stationary set is called a hidden oscillation. In nonlinear control theory, the birth of a hidden oscillation in a time-invariant control system with bounded states means crossing a boundary, in the domain of the parameters, where local stability of the stationary states implies global stability (see, e.g. Kalman's conjecture).
Espace des phasesdroite|vignette| Trajectoires dans l'espace des phases pour un pendule simple. L'axe X correspond à la position du pendule, et l'axe Y sa vitesse. Dans la théorie des systèmes dynamiques, l'espace des phases (ou espace d'état) d'un système est l'espace mathématique dans lequel tous les états possibles du système sont représentés ; chaque état possible correspondant à un point unique dans l'espace des phases. Pour un système mécanique, l'espace des phases se compose généralement de toutes les valeurs possibles des variables de position et d'impulsion représentant le système.
Système dynamique mesuréUn système dynamique mesuré est un objet mathématique, représentant un espace de phases muni d'une loi d'évolution, particulièrement étudié en théorie ergodique. Un système dynamique mesuré est la donnée d'un espace probabilisé et d'une application mesurable f : X → X. On exige que f préserve la mesure, ce qui veut dire que : Cette propriété très riche permet d'obtenir de puissants théorèmes. Par ailleurs, un théorème affirme qu'il existe, pour toute transformation continue X → X d'un espace topologique compact X, une mesure de probabilité, borélienne, préservant cette transformation.
Dedekind-infinite setIn mathematics, a set A is Dedekind-infinite (named after the German mathematician Richard Dedekind) if some proper subset B of A is equinumerous to A. Explicitly, this means that there exists a bijective function from A onto some proper subset B of A. A set is Dedekind-finite if it is not Dedekind-infinite (i.e., no such bijection exists). Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the natural numbers.
Mathématiques discrètesLes mathématiques discrètes, parfois appelées mathématiques finies, sont l'étude des structures mathématiques fondamentalement discrètes, par opposition aux structures continues. Contrairement aux nombres réels, qui ont la propriété de varier "en douceur", les objets étudiés en mathématiques discrètes (tels que les entiers relatifs, les graphes simples et les énoncés en logique) ne varient pas de cette façon, mais ont des valeurs distinctes séparées.
Billard (mathématiques)Un billard mathématique est un système dynamique dans lequel une particule alterne des mouvements libres sur une surface et des rebonds sur une paroi, sans perte de vitesse. L'angle de rebond est identique à l'angle d'incidence au moment de choc. Ces systèmes dynamiques sont des idéalisations hamiltoniennes du jeu de billard, mais où le domaine encadré par la frontière peut avoir d'autres formes qu'un rectangle et même être multidimensionnel. Les billards dynamiques peuvent aussi être étudiés sur des géométries non euclidiennes.