Plasma stabilityThe stability of a plasma is an important consideration in the study of plasma physics. When a system containing a plasma is at equilibrium, it is possible for certain parts of the plasma to be disturbed by small perturbative forces acting on it. The stability of the system determines if the perturbations will grow, oscillate, or be damped out. In many cases, a plasma can be treated as a fluid and its stability analyzed with magnetohydrodynamics (MHD).
Fusion par confinement magnétiqueLa fusion par confinement magnétique (FCM) est une méthode de confinement utilisée pour porter une quantité de combustible aux conditions de température et de pression désirées pour la fusion nucléaire. De puissants champs électromagnétiques sont employés pour atteindre ces conditions. Le combustible doit au préalable être converti en plasma, celui-ci se laisse ensuite influencer par les champs magnétiques. Il s'agit de la méthode utilisée dans les tokamaks toriques et sphériques, les stellarators et les machines à piège à miroirs magnétiques.
Tokamak sphériquethumb|Intérieur d'un tokamak sphérique. Un tokamak sphérique est un dispositif de confinement magnétique de plasma de type tokamak permettant d'obtenir des réactions de fusions de nucléons. Un tokamak sphérique a un solénoïde central beaucoup plus fin qu'un tokamak classique. Une telle installation serait susceptible d'être utilisée pour produire de l'électricité.
Discontinuité de GutenbergLa discontinuité de Gutenberg ou limite noyau-manteau (en anglais, core-mantle boundary ou CMB) est une discontinuité dans la vitesse sismique qui délimite le noyau et le manteau. Elle se situe à environ de profondeur. Nommée d'après le sismologue Beno Gutenberg, elle est aussi parfois appelée « interface noyau-manteau » ou CMB (anglais core-mantle boundary). Au niveau de cette discontinuité, le rapport pression/température permet la fusion des roches du manteau, grâce notamment à la cristallisation du noyau de fer liquide.
Noyau externeLe noyau externe est la partie liquide du noyau de la Terre, couche intermédiaire située au-dessus de la graine solide (noyau interne) et au-dessous du manteau terrestre. Comme la graine, le noyau est un alliage métallique, principalement constitué de fer et de nickel. Le liquide du noyau externe est animé de mouvements convectifs rapides qui induisent un effet dynamo à l'origine du champ magnétique terrestre. Les études des ondes sismiques qui se propagent à l'intérieur du globe terrestre ont permis à Richard Oldham de proposer l'existence d'un noyau central, plus dense, à l'intérieur de la Terre.
Noyau internethumb|x250px|Écorché de l'intérieur de la Terre. La graine est la partie jaune vif située au centre. Le noyau interne, ou la graine, est la partie solide située au centre de la Terre. C'est une boule de de rayon située au centre du noyau externe (liquide). Elle est composée d'un alliage de fer et de nickel, ainsi que d'éléments plus légers. La frontière entre le noyau externe et le noyau interne est appelée , ou ICB (pour inner core boundary). La graine a été découverte par la sismologue danoise Inge Lehmann en 1936.
S waveNOTOC In seismology and other areas involving elastic waves, S waves, secondary waves, or shear waves (sometimes called elastic S waves) are a type of elastic wave and are one of the two main types of elastic body waves, so named because they move through the body of an object, unlike surface waves. S waves are transverse waves, meaning that the direction of particle movement of a S wave is perpendicular to the direction of wave propagation, and the main restoring force comes from shear stress.
Tokamakthumb|Vue intérieure du tore du Tokamak à configuration variable (TCV), dont les parois sont recouvertes de tuiles de graphite. Un tokamak est un dispositif de confinement magnétique expérimental explorant la physique des plasmas et les possibilités de produire de l'énergie par fusion nucléaire. Il existe deux types de tokamaks aux caractéristiques sensiblement différentes, les tokamaks traditionnels toriques (objet de cet article) et les tokamaks sphériques.
Structure interne de la Terrevignette|redresse=1.2|Structure interne de la Terre : 1. Croûte continentale 2. Croûte océanique 3. Manteau supérieur 4. Manteau inférieur (ou Mésosphère) 5. Noyau externe 6. Noyau interne (ou graine terrestre) A. Discontinuité de Mohorovičić B. Discontinuité de Gutenberg C. Discontinuité de Lehmann La structure interne de la Terre est la répartition de l'intérieur de la Terre en enveloppes emboîtées : principalement la croûte, le manteau et le noyau, selon le modèle géologique actuel, qui s'efforce de décrire leurs propriétés et leurs comportements au cours des temps géologiques.
MagnétohydrodynamiqueLa magnétohydrodynamique (MHD) est une discipline scientifique qui décrit le comportement d'un fluide conducteur du courant électrique en présence de champs électromagnétiques. Elle s'applique notamment aux plasmas, au noyau externe et même à l'eau de mer. C'est une généralisation de l'hydrodynamique (appelée plus communément dynamique des fluides, définie par les équations de Navier-Stokes) couplée à l'électromagnétisme (équations de Maxwell).