Chaîne de désintégrationvignette|Différents modes de désintégration radioactive : radioactivités α, β et β, capture électronique (ε), émission de neutron (n) et émission de proton (p). N et Z sont le nombre de neutrons et le nombre de protons des noyaux considérés. Une chaîne de désintégration, ou chaîne radioactive, ou série radioactive, ou désintégration en cascade, ou encore filiation radioactive, est une succession de désintégrations d'un radioisotope jusqu'à un élément chimique dont le noyau atomique est stable (par conséquent non radioactif), généralement le plomb (Pb), élément le plus lourd possédant des isotopes stables.
Ondevignette|Propagation d'une onde. Une onde est la propagation d'une perturbation produisant sur son passage une variation réversible des propriétés physiques locales du milieu. Elle se déplace avec une vitesse déterminée qui dépend des caractéristiques du milieu de propagation. vignette|Une vague s'écrasant sur le rivage. Il existe trois principaux types d'ondes : les ondes mécaniques se propagent à travers une matière physique dont la substance se déforme. Les forces de restauration inversent alors la déformation.
Décroissance exponentiellethumb|La décharge d'un condensateur est à décroissance exponentielle. La décroissance exponentielle d'une quantité est sa diminution au fil du temps selon une loi exponentielle. On l'observe quand la dérivée par rapport au temps de cette quantité (c'est-à-dire son taux de variation instantané) est négative et proportionnelle à la quantité elle-même. Dans la langue courante on emploie souvent, mais improprement, le terme « décroissance exponentielle » pour qualifier une diminution simplement décélérée, quand la valeur absolue de la dérivée est elle-même décroissante.
Trou noiralt=|vignette|Le disque d'accrétion du trou noir M87* imagé par l'en. Le trou noir lui-même est invisible, au centre de la zone noire centrale. En astrophysique, un trou noir est un objet céleste si compact que l'intensité de son champ gravitationnel empêche toute forme de matière ou de rayonnement de s'en échapper. De tels objets ne peuvent ni émettre, ni diffuser la lumière et sont donc noirs, ce qui en astronomie revient à dire qu'ils sont optiquement invisibles.
Topologie de la droite réellethumb|Richard Dedekind (1831 - 1916) a défini rigoureusement les nombres réels et posé les bases de leur étude topologique. La topologie de la droite réelle (ou topologie usuelle de R) est une structure mathématique qui donne, pour l'ensemble des nombres réels, des définitions précises aux notions de limite et de continuité. Historiquement, ces notions se sont développées autour de la notion de nombre (approcher des nombres comme la racine carrée de deux ou pi par d'autres plus « maniables ») et de la géométrie de la droite (à laquelle l'espace topologique des nombres réels peut être assimilé), du plan et de l'espace usuels.
Micro-trou noirLes micro-trous noirs sont de minuscules trous noirs hypothétiques, également appelés trous noirs quantiques ou mini-trous noirs, pour lesquels les effets liés à la mécanique quantique jouent un rôle important. Il est possible que de tels trous noirs quantiques aient été créés dans l'environnement très dense de l'univers primordial, ou au cours de transitions de phases ultérieures : on parle dans ce cas de trous noirs primordiaux. Ils pourraient être détectés prochainement par les astrophysiciens, grâce aux particules qu'ils devraient émettre par rayonnement de Hawking.
Fonction d'ondethumb|300px|right|Illustration de la notion de fonction d'onde dans le cas d'un oscillateur harmonique. Le comportement en mécanique classique est représenté sur les images A et B et celui en mécanique quantique sur les figures C à H. Les parties réelles et imaginaires des fonctions d'onde sont représentées respectivement en bleu et en rouge. Les images C à F correspondent à des états stationnaires de l'énergie, tandis que les figures G et H correspondent à des états non stationnaires.
Formule sommatoire de PoissonLa formule sommatoire de Poisson (parfois appelée resommation de Poisson) est une identité entre deux sommes infinies, la première construite avec une fonction , la seconde avec sa transformée de Fourier . Ici, f est une fonction sur la droite réelle ou plus généralement sur un espace euclidien. La formule a été découverte par Siméon Denis Poisson. Elle, et ses généralisations, sont importantes dans plusieurs domaines des mathématiques, dont la théorie des nombres, l'analyse harmonique, et la géométrie riemannienne.
Équations de Boussinesqthumb|right|250px|Ondes de gravité à l'entrée d'un port (milieu à profondeur variable). Les équations de Boussinesq en mécanique des fluides désignent un système d'équations d'ondes obtenu par approximation des équations d'Euler pour des écoulements incompressibles irrotationnels à surface libre. Elles permettent de prévoir les ondes de gravité comme ondes cnoïdales, ondes de Stokes, houle, tsunamis, solitons, etc. Ces équations ont été introduites par Joseph Boussinesq en 1872 et sont un exemple d'équations aux dérivées partielles dispersives.
Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.