Trou noir de KerrEn astrophysique, un trou noir de Kerr, ainsi désigné en l'honneur du mathématicien néozélandais Roy Kerr, est, par définition, un trou noir : de masse strictement positive : ; dont le moment cinétique n'est pas nul : , c'est-à-dire qui est en rotation axiale ; dont la charge électrique est nulle . D'après la conjecture de calvitie, proposée par John Wheeler, il est un des quatre types théoriques de trous noirs.
Radioactivité de clustersLa radioactivité de clusters (aussi nommée radioactivité des particules lourdes ou radioactivité d'ions lourds) est un type (rare) de décroissance radioactive, dans lequel un noyau atomique parent avec A nucléons et Z protons émet un « cluster » (agrégat nucléaire) de Ne neutrons et Ze protons plus lourd qu’une particule alpha, mais plus léger qu’un fragment typique de fission binaire. Du fait de la perte de protons du noyau parent, le noyau fils a un nombre de masse Af = A - Ae et un numéro atomique Zf = Z - Ze où Ae = Ne + Ze.
Métrique de SchwarzschildEn astrophysique, dans le cadre de la relativité générale, la métrique de Schwarzschild est une solution des équations d'Einstein. L'espace-temps, dont la métrique décrit la géométrie, a quatre dimensions ; il est vide mais courbe bien qu'asymptotiquement plat ; il est à symétrie sphérique et stationnaire ; il est statique à l'extérieur d'un rayon critique : le rayon de Schwarzschild ; et, lorsque le vide s'étend au-delà de ce rayon, la métrique met en évidence un trou noir : le trou noir de Schwarzschild .
Théorème d'inversion de FourierEn mathématiques, le théorème d'inversion de Fourier dit que pour de nombreux types de fonctions, il est possible de retrouver une fonction à partir de sa transformée de Fourier. En traitement du signal, on pourrait dire que la connaissance de toutes les informations d'amplitude et de phase des ondes constituant un signal permet précisément de reconstruire ce signal.
Espace de SobolevEn analyse mathématique, les espaces de Sobolev sont des espaces fonctionnels particulièrement adaptés à la résolution des problèmes d'équation aux dérivées partielles. Ils doivent leur nom au mathématicien russe Sergueï Lvovitch Sobolev. Plus précisément, un espace de Sobolev est un espace vectoriel de fonctions muni de la norme obtenue par la combinaison de la norme L de la fonction elle-même et de ses dérivées jusqu'à un certain ordre. Les dérivées sont comprises dans un sens faible, au sens des distributions afin de rendre l'espace complet.
Énergie potentielleL'énergie potentielle d'un système physique est l'énergie liée à une interaction, qui a la capacité de se transformer en d'autres formes d'énergie, le plus souvent en énergie cinétique, une énergie de mouvement. La force qui modélise l'interaction est une force conservative c'est-à-dire que son travail ne dépend pas du chemin suivi lors du déplacement, mais uniquement du point de départ et du point d'arrivée : .
Distribution (mathématiques)En analyse mathématique, une distribution (également appelée fonction généralisée) est un objet qui généralise la notion de fonction et de mesure. La théorie des distributions étend la notion de dérivée à toutes les fonctions localement intégrables et au-delà, et est utilisée pour formuler des solutions à certaines équations aux dérivées partielles. Elles sont importantes en physique et en ingénierie où beaucoup de problèmes discontinus conduisent naturellement à des équations différentielles dont les solutions sont des distributions plutôt que des fonctions ordinaires.
Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Particle decayIn particle physics, particle decay is the spontaneous process of one unstable subatomic particle transforming into multiple other particles. The particles created in this process (the final state) must each be less massive than the original, although the total invariant mass of the system must be conserved. A particle is unstable if there is at least one allowed final state that it can decay into. Unstable particles will often have multiple ways of decaying, each with its own associated probability.
Infinithumb|∞ : le symbole infini. Le mot « infini » (-e, -s) est un adjectif servant à qualifier quelque chose qui n'a pas de limite en nombre ou en taille. Il vient du latin infīnītus, dérivé de fīnītus « limité » (avec in-, préfixe négatif), issu lui-même du verbe fīnĭo, fīnīre (« délimiter », mais aussi : « préciser », « déterminer », et intransitivement « finir »), et du nom fīnis (souvent au pluriel, fīnes : « bornes, limites d'un champ », « frontières d'un pays ») ; il signifie donc, littéralement « qui est sans borne », mais aussi « indéterminé » et « indéfini ».