Biais d'autocomplaisanceLa notion de biais d'auto-complaisance désigne la tendance des gens à attribuer la causalité de leur réussite à leurs qualités propres (causes internes) et leurs échecs à des facteurs ne dépendant pas d'eux (causes externes), afin de maintenir positive leur . Ce biais cognitif a été d'abord défini dans le livre Person Perception de Albert H. Hastorf, David J. Schneider, Judith Polefka en 1970. Par exemple, un individu justifiera l'obtention d'une bonne note à un examen en évoquant le travail qu'il a fourni, alors qu'il expliquera l'obtention d'une mauvaise note par la sévérité du correcteur.
Criticité auto-organiséethumb|Une image 2D du tas de sable de Bak-Tang-Wiesenfeld, le modèle original de la criticité auto-organisée.|300px La criticité auto-organisée est une propriété des systèmes dynamiques qui ont un point critique comme attracteur. Leur comportement macroscopique présente alors l'invariance d'échelle spatiale ou temporelle d'un point critique d'une transition de phase, mais sans la nécessité de calibrer les paramètres de contrôle sur une valeur précise, car le système se calibre lui-même en évoluant vers la criticité.
Théorie spectraleEn mathématiques, et plus particulièrement en analyse, une théorie spectrale est une théorie étendant à des opérateurs définis sur des espaces fonctionnels généraux la théorie élémentaire des valeurs propres et des vecteurs propres de matrices. Bien que ces idées viennent au départ du développement de l'algèbre linéaire, elles sont également liées à l'étude des fonctions analytiques, parce que les propriétés spectrales d'un opérateur sont liées à celles de fonctions analytiques sur les valeurs de son spectre.
Série divergenteEn mathématiques, une série infinie est dite divergente si la suite de ses sommes partielles n'est pas convergente. En ce qui concerne les séries de nombres réels, ou de nombres complexes, une condition nécessaire de convergence est que le terme général de la série tende vers 0. Par contraposition, cela fournit de nombreux exemples de séries divergentes, par exemple celle dont tous les termes valent 1.
Fonction (mathématiques)vignette|Diagramme de calcul pour la fonction En mathématiques, une fonction permet de définir un résultat (le plus souvent numérique) pour chaque valeur d’un ensemble appelé domaine. Ce résultat peut être obtenu par une suite de calculs arithmétiques ou par une liste de valeurs, notamment dans le cas de relevé de mesures physiques, ou encore par d’autres procédés comme les résolutions d’équations ou les passages à la limite. Le calcul effectif du résultat ou son approximation repose éventuellement sur l’élaboration de fonction informatique.
Estime de soiL’estime de soi est, en psychologie, un terme désignant le jugement ou l'évaluation qu'une personne a de sa propre valeur. Lorsqu'un individu accomplit un acte qu'il pense valable, il ressent une valorisation ; lorsqu'il évalue ses actions comme étant en opposition à ses valeurs, il réagit en . Selon certains psychologues, cette notion est à distinguer de la qui, bien que liée, est en rapport avec des capacités plus qu'avec des valeurs. Les expériences vécues par un individu durant sa vie développent son estime de soi.
1 + 2 + 3 + 4 + ⋯1 + 2 + 3 + 4 + ⋯, la série des entiers strictement positifs pris dans l'ordre croissant, est en analyse une série divergente. La n-ième somme partielle de cette série est le nombre triangulaire : La suite de ces sommes partielles est croissante et non majorée donc tend vers l'infini. Bien que cette série ne possède donc a priori pas de valeur significative, elle peut être manipulée pour produire un certain nombre de résultats mathématiquement intéressants (en particulier, diverses méthodes de sommation lui donnent la valeur -1/12), dont certains ont des applications dans d'autres domaines, comme l'analyse complexe, la théorie quantique des champs, la théorie des cordes ou encore l'effet Casimir.
Intégrale de cheminUne 'intégrale de chemin' (« path integral » en anglais) est une intégrale fonctionnelle, c'est-à-dire que l'intégrant est une fonctionnelle et que la somme est prise sur des fonctions, et non sur des nombres réels (ou complexes) comme pour les intégrales ordinaires. On a donc ici affaire à une intégrale en dimension infinie. Ainsi, on distinguera soigneusement l'intégrale de chemin (intégrale fonctionnelle) d'une intégrale ordinaire calculée sur un chemin de l'espace physique, que les mathématiciens appellent intégrale curviligne.