Publication

Asymptotics and analytic modes for the wave equation in similarity coordinates

Roland Donninger
2009
Article
Résumé

We consider the radial wave equation in similarity coordinates within the semigroup formalism. It is known that the generator of the semigroup exhibits a continuum of eigenvalues and embedded in this continuum there exists a discrete set of eigenvalues with analytic eigenfunctions. Our results show that, for sufficiently regular data, the long-time behaviour of the solution is governed by the analytic eigenfunctions. The same techniques are applied to the linear stability problem for the fundamental self-similar solution chi(T) of the wave equation with a focusing power nonlinearity. Analogous to the free wave equation, we show that the long-time behaviour (in similarity coordinates) of linear perturbations around chi(T) is governed by analytic mode solutions. In particular, this yields a rigorous proof for the linear stability of chi(T) with the sharp decay rate for the perturbations.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.