Loi de probabilitéthumb|400px 3 répartitions.png En théorie des probabilités et en statistique, une loi de probabilité décrit le comportement aléatoire d'un phénomène dépendant du hasard. L'étude des phénomènes aléatoires a commencé avec l'étude des jeux de hasard. Jeux de dés, tirage de boules dans des urnes et jeu de pile ou face ont été des motivations pour comprendre et prévoir les expériences aléatoires. Ces premières approches sont des phénomènes discrets, c'est-à-dire dont le nombre de résultats possibles est fini ou infini dénombrable.
Loi uniforme discrèteEn théorie des probabilités, une loi discrète uniforme est une loi de probabilité discrète pour laquelle la probabilité de réalisation est identique (équiprobabilité) pour chaque modalité d’un ensemble fini de modalités possibles. C'est le cas par exemple de la loi de la variable aléatoire donnant le résultat du lancer d'une pièce équilibrée, avec deux modalités équiprobables : Pile, et Face. C'est aussi le cas de celle donnant le résultat du jet d'un dé équilibré.
Variable aléatoirevignette|La valeur d’un dé après un lancer est une variable aléatoire comprise entre 1 et 6. En théorie des probabilités, une variable aléatoire est une variable dont la valeur est déterminée après la réalisation d’un phénomène, expérience ou événement, aléatoire. En voici des exemples : la valeur d’un dé entre 1 et 6 ; le côté de la pièce dans un pile ou face ; le nombre de voitures en attente dans la 2e file d’un télépéage autoroutier ; le jour de semaine de naissance de la prochaine personne que vous rencontrez ; le temps d’attente dans la queue du cinéma ; le poids de la part de tomme que le fromager vous coupe quand vous lui en demandez un quart ; etc.
Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
Schéma d'approximation en temps polynomialEn informatique, un schéma d'approximation en temps polynomial (en anglais polynomial-time approximation scheme, abrégé en PTAS) est une famille d'algorithmes d'approximation pour des problèmes d'optimisation combinatoire. On dit aussi plus simplement schéma d'approximation polynomial. Le plus souvent, les problèmes d'optimisation combinatoire considérés sont NP-difficiles. Plusieurs variantes des PTAS existent : des définitions plus restrictives comme les EPTAS et FPTAS, ou d'autres qui reposent sur les algorithmes probabilistes comme les PRAS et FPRAS.
Fonction de masse (probabilités)En théorie des probabilités, la fonction de masse est la fonction qui donne la probabilité de chaque issue ( résultat élémentaire) d'une expérience aléatoire. C'est souvent ainsi que l'on définit une loi de probabilité discrète. Elle se distingue de la fonction de densité, de la densité de probabilité, en ceci que les densités de probabilité ne sont définies que pour des variables aléatoires absolument continues, et que ce sont leurs intégrales sur des domaines qui ont valeurs de probabilités (et non leurs valeurs en des points).
Binomial proportion confidence intervalIn statistics, a binomial proportion confidence interval is a confidence interval for the probability of success calculated from the outcome of a series of success–failure experiments (Bernoulli trials). In other words, a binomial proportion confidence interval is an interval estimate of a success probability p when only the number of experiments n and the number of successes nS are known. There are several formulas for a binomial confidence interval, but all of them rely on the assumption of a binomial distribution.
Variables indépendantes et identiquement distribuéesvignette|upright=1.5|alt=nuage de points|Ce nuage de points représente 500 valeurs aléatoires iid simulées informatiquement. L'ordonnée d'un point est la valeur simulée suivante, dans la liste des 500 valeurs, de la valeur simulée pour l'abscisse du point. En théorie des probabilités et en statistique, des variables indépendantes et identiquement distribuées sont des variables aléatoires qui suivent toutes la même loi de probabilité et sont indépendantes. On dit que ce sont des variables aléatoires iid ou plus simplement des variables iid.
Intervalle de confiancevignette|Chaque ligne montre 20 échantillons tirés selon la loi normale de moyenne μ. On y montre l'intervalle de confiance de niveau 50% pour la moyenne correspondante aux 20 échantillons, marquée par un losange. Si l'intervalle contient μ, il est bleu ; sinon il est rouge. En mathématiques, plus précisément en théorie des probabilités et en statistiques, un intervalle de confiance encadre une valeur réelle que l’on cherche à estimer à l’aide de mesures prises par un procédé aléatoire.
Théorie des probabilitésLa théorie des probabilités en mathématiques est l'étude des phénomènes caractérisés par le hasard et l'incertitude. Elle forme avec la statistique les deux sciences du hasard qui sont partie intégrante des mathématiques. Les débuts de l'étude des probabilités correspondent aux premières observations du hasard dans les jeux ou dans les phénomènes climatiques par exemple. Bien que le calcul de probabilités sur des questions liées au hasard existe depuis longtemps, la formalisation mathématique n'est que récente.