Théorie de la stabilitéEn mathématiques, la théorie de la stabilité traite la stabilité des solutions d'équations différentielles et des trajectoires des systèmes dynamiques sous des petites perturbations des conditions initiales. L'équation de la chaleur, par exemple, est une équation aux dérivées partielles stable parce que des petites perturbations des conditions initiales conduisent à des faibles variations de la température à un temps ultérieur en raison du principe du maximum.
Îlot de stabilitéL’îlot de stabilité est un ensemble hypothétique de nucléides transuraniens qui présenteraient une période radioactive très supérieure à celle des isotopes voisins. Ce concept est issu du modèle en couches du noyau atomique, dans lequel les nucléons sont vus comme des objets quantiques qui se répartissent dans le noyau en niveaux d'énergie de façon similaire aux électrons dans les atomes : lorsqu'un niveau d'énergie est saturé de nucléons, cela confère une stabilité particulière au noyau.
Hermann MinkowskiHermann Minkowski, né à Alexotas (alors en Russie, dans le Gouvernement de Suwałki, et aujourd'hui en Lituanie) le et mort à Göttingen le , est un mathématicien et un physicien théoricien allemand. Hermann Minkowski naît le à Alexotas près de Kaunas dans une famille juive. Il est le cadet des trois enfants de Lewin Minkowski et de son épouse Rachel, née Raubmann. En , les Minkowski quittent Alexotas pour Königsberg. Minkowski y passe le reste de son enfance.
Opérateur d'évolutionEn mécanique quantique, l'opérateur d'évolution est l'opérateur qui transforme l'état quantique au temps en l'état quantique au temps résultant de l'évolution du système sous l'effet de l'opérateur hamiltonien. On considère un hamiltonien composé de deux termes : où la dépendance temporelle est contenue dans . Quand , le système est complètement connu par ses kets propres et ses valeurs propres : Cet opérateur est noté et on a la relation, qui donne l'état du système au temps à partir du temps initial : où représente le ket au temps représente le ket au temps Pour le bra, on a alors la relation suivante : L'opérateur a les propriétés suivantes : C'est un opérateur linéaire est un opérateur unitaire ().
Équation de SchrödingerL'équation de Schrödinger, conçue par le physicien autrichien Erwin Schrödinger en 1925, est une équation fondamentale en mécanique quantique. Elle décrit l'évolution dans le temps d'une particule massive non relativiste, et remplit ainsi le même rôle que la relation fondamentale de la dynamique en mécanique classique. Au début du , il était devenu clair que la lumière présentait une dualité onde-corpuscule, c'est-à-dire qu'elle pouvait se manifester, selon les circonstances, soit comme une particule, le photon, soit comme une onde électromagnétique.
Empilement compactUn empilement compact d'une collection d'objets est un agencement de ces objets de telle sorte qu'ils occupent le moins d'espace possible (donc qu'ils laissent le moins de vide possible). Le problème peut se poser dans un espace (euclidien ou non) de dimension n quelconque, les objets étant eux-mêmes de dimension n. Les applications pratiques sont concernées par les cas (plan et autres surfaces) et (espace ordinaire).
Nonlinear systemIn mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists since most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems.
Sphère de HillEn astronomie, la sphère de Hill (ou sphère de Roche) d'un corps A en orbite autour d'un autre B, plus massif, est une approximation de la zone d'influence gravitationnelle de ce premier corps A, c'est-à-dire du volume d'espace où la satellisation d'un troisième corps C de masse négligeable devant les 2 premiers, est possible autour du premier corps A, lui-même en orbite, sans être capturé par le deuxième B. Le concept a été défini par l'astronome américain George William Hill, sur la base de travaux antérieurs de l'astronome français Édouard Roche.
Vallée de stabilitéLa vallée de stabilité désigne, en physique nucléaire, l'endroit où se situent les isotopes stables, quand on porte en abscisse le numéro atomique et en ordonnée le nombre de neutrons de chaque isotope (carte des nucléides - les deux axes sont parfois inversés sur certaines représentations). Certains isotopes sont stables, d'autres ne le sont pas et donnent, après une émission radioactive, naissance à un autre élément qui peut être lui-même sous la forme d'un isotope stable ou radioactif.
InstantonEn mécanique quantique et en théorie quantique des champs, un instanton est une solution classique des équations du mouvement c'est-à-dire correspondant à un extremum local de l'action qui définit la théorie, mais pas à un minimum global. Puisque la théorie perturbative considère la plupart du temps un développement en puissance de la constante de couplage de la théorie au voisinage du minimum global de l'action, appelé l'état fondamental, les instantons sont inaccessibles à ce développement et constituent de ce point de vue des phénomènes non-perturbatifs.