Fonction caractéristique (probabilités)En mathématiques et plus particulièrement en théorie des probabilités et en statistique, la fonction caractéristique d'une variable aléatoire réelle est une quantité qui détermine de façon unique sa loi de probabilité. Si cette variable aléatoire a une densité, alors la fonction caractéristique est la transformée de Fourier inverse de la densité. Les valeurs en zéro des dérivées successives de la fonction caractéristique permettent de calculer les moments de la variable aléatoire.
Indecomposable distributionIn probability theory, an indecomposable distribution is a probability distribution that cannot be represented as the distribution of the sum of two or more non-constant independent random variables: Z ≠ X + Y. If it can be so expressed, it is decomposable: Z = X + Y. If, further, it can be expressed as the distribution of the sum of two or more independent identically distributed random variables, then it is divisible: Z = X1 + X2. The simplest examples are Bernoulli-distributeds: if then the probability distribution of X is indecomposable.
Distribution (mathématiques)En analyse mathématique, une distribution (également appelée fonction généralisée) est un objet qui généralise la notion de fonction et de mesure. La théorie des distributions étend la notion de dérivée à toutes les fonctions localement intégrables et au-delà, et est utilisée pour formuler des solutions à certaines équations aux dérivées partielles. Elles sont importantes en physique et en ingénierie où beaucoup de problèmes discontinus conduisent naturellement à des équations différentielles dont les solutions sont des distributions plutôt que des fonctions ordinaires.
Fonction de répartition empiriqueEn statistiques, une fonction de répartition empirique est une fonction de répartition qui attribue la probabilité 1/n à chacun des n nombres dans un échantillon. Soit X,...,X un échantillon de variables iid définies sur un espace de probabilité , à valeurs dans , avec pour fonction de répartition F. La fonction de répartition empirique de l'échantillon est définie par : où est la fonction indicatrice de l'événement A. Pour chaque ω, l'application est une fonction en escalier, fonction de répartition de la loi de probabilité uniforme sur l'ensemble .
Loi de ZipfLa loi de Zipf est une observation empirique concernant la fréquence des mots dans un texte. Elle a pris le nom de son auteur, George Kingsley Zipf (1902-1950). Cette loi a d'abord été formulée par Jean-Baptiste Estoup et a été par la suite démontrée à partir de formules de Shannon par Benoît Mandelbrot. Elle est parfois utilisée en dehors de ce contexte, par exemple au sujet de la taille et du nombre des villes dans chaque pays, lorsque cette loi semble mieux répondre aux chiffres que la distribution de Pareto.
Loi triangulaireEn théorie des probabilités, une loi triangulaire est une loi de probabilité dont la fonction de densité est affine de sa borne inférieure à son mode, et de son mode à sa borne supérieure. Elle est mentionnée sous deux versions : une loi discrète et une loi continue. La loi triangulaire discrète de paramètre entier positif a est définie pour tout entier x compris entre –a et a par : La loi triangulaire continue sur le support ]a ; b[ et de mode c a pour fonction de densité : Dans de nombreux domaines, la loi triangulaire est considérée comme une version simplifiée de la loi bêta.
Théorème central limitethumb|upright=2|La loi normale, souvent appelée la « courbe en cloche ». Le théorème central limite (aussi appelé théorème limite central, théorème de la limite centrale ou théorème de la limite centrée) établit la convergence en loi de la somme d'une suite de variables aléatoires vers la loi normale. Intuitivement, ce résultat affirme qu'une somme de variables aléatoires indépendantes et identiquement distribuées tend (le plus souvent) vers une variable aléatoire gaussienne.
Conditional probability distributionIn probability theory and statistics, given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter. When both and are categorical variables, a conditional probability table is typically used to represent the conditional probability.
Loi de probabilité à plusieurs variablesvignette|Représentation d'une loi normale multivariée. Les courbes rouge et bleue représentent les lois marginales. Les points noirs sont des réalisations de cette distribution à plusieurs variables. Dans certains problèmes interviennent simultanément plusieurs variables aléatoires. Mis à part les cas particuliers de variables indépendantes (notion définie ci-dessous) et de variables liées fonctionnellement, cela introduit la notion de loi de probabilité à plusieurs variables autrement appelée loi jointe.
Uniformethumb|Jeunes filles en uniforme scolaire en Gambie en 1984. L'uniforme est un habit réglementaire, que tous les membres d'un groupe doivent porter selon des règles précises. C'est une tradition qui vient de l'Empire romain. Uniforme militaire : c'est l'habit du militaire. Il est confectionné Son caractère militaire et national est affirmé par des attributs et insignes nettement définis. Uniformes scolaires : tenues d'élèves (écoliers, lycéens, étudiants, etc.) ; tenues d'enseignants (robes universitaires).