Équation de la chaleurEn mathématiques et en physique théorique, l'équation de la chaleur est une équation aux dérivées partielles parabolique, pour décrire le phénomène physique de conduction thermique, introduite initialement en 1807 par Joseph Fourier, après des expériences sur la propagation de la chaleur, suivies par la modélisation de l'évolution de la température avec des séries trigonométriques, appelés depuis séries de Fourier et transformées de Fourier, permettant une grande amélioration à la modélisation mathématique
Enzyme de restrictionthumb|L'enzyme de restriction EcoRV (en vert) avec son substrat : l'ADN. Une enzyme de restriction est une protéine capable de couper un fragment d'ADN au niveau d'une séquence de nucléotides caractéristique appelée site de restriction. Chaque enzyme de restriction reconnaît ainsi un site spécifique. Plusieurs centaines d'enzymes de restriction sont actuellement connues. Naturellement présentes chez un grand nombre d'espèces de bactéries, ces enzymes sont devenues des outils importants en génie génétique.
Convection–diffusion equationThe convection–diffusion equation is a combination of the diffusion and convection (advection) equations, and describes physical phenomena where particles, energy, or other physical quantities are transferred inside a physical system due to two processes: diffusion and convection. Depending on context, the same equation can be called the advection–diffusion equation, drift–diffusion equation, or (generic) scalar transport equation.
Restriction digestA restriction digest is a procedure used in molecular biology to prepare DNA for analysis or other processing. It is sometimes termed DNA fragmentation, though this term is used for other procedures as well. In a restriction digest, DNA molecules are cleaved at specific restriction sites of 4-12 nucleotides in length by use of restriction enzymes which recognize these sequences. The resulting digested DNA is very often selectively amplified using polymerase chain reaction (PCR), making it more suitable for analytical techniques such as agarose gel electrophoresis, and chromatography.
Isotropic quadratic formIn mathematics, a quadratic form over a field F is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise the quadratic form is anisotropic. More explicitly, if q is a quadratic form on a vector space V over F, then a non-zero vector v in V is said to be isotropic if q(v) = 0. A quadratic form is isotropic if and only if there exists a non-zero isotropic vector (or null vector) for that quadratic form. Suppose that (V, q) is quadratic space and W is a subspace of V.
Definite quadratic formIn mathematics, a definite quadratic form is a quadratic form over some real vector space V that has the same sign (always positive or always negative) for every non-zero vector of V. According to that sign, the quadratic form is called positive-definite or negative-definite. A semidefinite (or semi-definite) quadratic form is defined in much the same way, except that "always positive" and "always negative" are replaced by "never negative" and "never positive", respectively.
Diffusion de la matièreLa diffusion de la matière, ou diffusion chimique, désigne la tendance naturelle d'un système à rendre uniforme le potentiel chimique de chacune des espèces chimiques qu'il comporte. La diffusion chimique est un phénomène de transport irréversible qui tend à homogénéiser la composition du milieu. Dans le cas d'un mélange binaire et en l'absence des gradients de température et de pression, la diffusion se fait des régions de plus forte concentration vers les régions de concentration moindre.
Initial value problemIn multivariable calculus, an initial value problem (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain. Modeling a system in physics or other sciences frequently amounts to solving an initial value problem. In that context, the differential initial value is an equation which specifies how the system evolves with time given the initial conditions of the problem.
Équation des ondesL' ou est une équation aux dérivées partielles en physique qui régit la propagation d'une onde. C'est une équation vérifiée par de nombreux phénomènes ondulatoires de la vie courante comme le son ou la lumière. avec : l'opérateur laplacien ; l'onde vectorielle; une constante, vitesse de propagation de dans le milieu considéré ; L'utilisation du laplacien permet de s'affranchir du choix d'un système de coordonnées. avec : l'opérateur de dérivée partielle seconde en appliqué sur ; , les trois variables cartésiennes de l'espace, et celle du temps.
Équation différentielleEn mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.