Active-pixel sensorAn active-pixel sensor (APS) is an , which was invented by Peter J.W. Noble in 1968, where each pixel sensor unit cell has a photodetector (typically a pinned photodiode) and one or more active transistors. In a metal–oxide–semiconductor (MOS) active-pixel sensor, MOS field-effect transistors (MOSFETs) are used as amplifiers. There are different types of APS, including the early NMOS APS and the now much more common complementary MOS (CMOS) APS, also known as the CMOS sensor.
Accélération matérielleL'accélération matérielle consiste à confier une fonction spécifique effectuée par le processeur à un circuit intégré dédié qui effectuera cette fonction de façon plus efficace. Pendant longtemps, les calculs effectués par les ordinateurs grand public étaient entièrement pris en charge par le processeur central (CPU). Or, ce processeur s'avérait insuffisant dans un certain nombre de domaines. On eut l'idée de créer des circuits plus efficaces que le processeur pour ces tâches afin de le décharger.
Vision par ordinateurLa vision par ordinateur est un domaine scientifique et une branche de l’intelligence artificielle qui traite de la façon dont les ordinateurs peuvent acquérir une compréhension de haut niveau à partir d's ou de vidéos numériques. Du point de vue de l'ingénierie, il cherche à comprendre et à automatiser les tâches que le système visuel humain peut effectuer. Les tâches de vision par ordinateur comprennent des procédés pour acquérir, traiter, et « comprendre » des images numériques, et extraire des données afin de produire des informations numériques ou symboliques, par ex.
Détection de personnesvignette|Un exemple de détection de personnes sur une voie de circulation La détection de personnes est un domaine de la vision par ordinateur consistant à détecter un humain dans une . C'est un cas particulier de détection d'objet, où l'on cherche à détecter la présence et la localisation précise, dans une image, d'une ou plusieurs personnes, en général dans une posture proche de celle de la station debout ou de la marche. On parle également de détection de piéton, en raison de l'importance des applications en vidéosurveillance et pour les systèmes de vision embarqués dans des véhicules.
Binocular disparityBinocular disparity refers to the difference in image location of an object seen by the left and right eyes, resulting from the eyes’ horizontal separation (parallax). The brain uses binocular disparity to extract depth information from the two-dimensional s in stereopsis. In computer vision, binocular disparity refers to the difference in coordinates of similar features within two stereo images. A similar disparity can be used in rangefinding by a coincidence rangefinder to determine distance and/or altitude to a target.
Digital image processingDigital image processing is the use of a digital computer to process s through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over . It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems.
Pose (computer vision)In the fields of computing and computer vision, pose (or spatial pose) represents the position and orientation of an object, usually in three dimensions. Poses are often stored internally as transformation matrices. The term “pose” is largely synonymous with the term “transform”, but a transform may often include scale, whereas pose does not. In computer vision, the pose of an object is often estimated from camera input by the process of pose estimation.
Mesure stéréoscopiqueLa stéréovision ou mesure stéréoscopique est une méthode de mesure qui consiste à se servir de la prise d'images (photographiques ou numériques) prises de différents points de vue, pour déterminer les dimensions, les formes ou les positions d'objets. Pour cela on utilise : soit des appareils photographiques étalonnés utilisant des films argentiques plans et stables dimensionnellement ou des détecteurs C.C.D à haute résolution pour des mesures statiques ; soit des caméras (film ou CCD) si des mesures dynamiques sont nécessaires (vidéogrammétrie).
Template matchingTemplate matching is a technique in for finding small parts of an image which match a template image. It can be used for quality control in manufacturing, navigation of mobile robots, or edge detection in images. The main challenges in a template matching task are detection of occlusion, when a sought-after object is partly hidden in an image; detection of non-rigid transformations, when an object is distorted or imaged from different angles; sensitivity to illumination and background changes; background clutter; and scale changes.
Échantillonnage (signal)L'échantillonnage consiste à prélever les valeurs d'un signal à intervalles définis, généralement réguliers. Il produit une suite de valeurs discrètes nommées échantillons. L'application la plus courante de l'échantillonnage est aujourd'hui la numérisation d'un signal variant dans le temps, mais son principe est ancien. Depuis plusieurs siècles, on surveille les mouvements lents en inscrivant, périodiquement, les valeurs relevées dans un registre : ainsi des hauteurs d'eau des marées ou des rivières, de la quantité de pluie.