Modèle statistiqueUn modèle statistique est une description mathématique approximative du mécanisme qui a généré les observations, que l'on suppose être un processus stochastique et non un processus déterministe. Il s’exprime généralement à l’aide d’une famille de distributions (ensemble de distributions) et d’hypothèses sur les variables aléatoires X1, . . ., Xn. Chaque membre de la famille est une approximation possible de F : l’inférence consiste donc à déterminer le membre qui s’accorde le mieux avec les données.
Order isomorphismIn the mathematical field of order theory, an order isomorphism is a special kind of monotone function that constitutes a suitable notion of isomorphism for partially ordered sets (posets). Whenever two posets are order isomorphic, they can be considered to be "essentially the same" in the sense that either of the orders can be obtained from the other just by renaming of elements. Two strictly weaker notions that relate to order isomorphisms are order embeddings and Galois connections.
Entorse (médecine)vignette|Entorse de la cheville avec hématome. L’entorse est un traumatisme des ligaments occasionné par une mobilisation excessive d'une articulation. Le ligament est une bande de tissu fibreux très résistante qui unit les os entre eux et joue donc un rôle important dans la stabilité de l'articulation. Lors d'une entorse, il est en général étiré ou distendu, mais il peut être également déchiré (entorse grave ou déchirure), avec des complications liées à des arrachements osseux (pour l'entorse du genou avec arrachement osseux, voir la fracture de Segond).
AdditionL'addition est une opération élémentaire, permettant notamment de décrire la réunion de quantités ou l'adjonction de grandeurs extensives de même nature, comme les longueurs, les aires, ou les volumes. En particulier en physique, l'addition de deux grandeurs ne peut s'effectuer numériquement que si ces grandeurs sont exprimées avec la même unité de mesure. Le résultat d'une addition est appelé une somme, et les nombres que l'on additionne, les termes.
Nombre constructibleUn nombre constructible (sous-entendu à la règle et au compas) est la mesure d'une longueur associée à deux points constructibles à la règle (non graduée) et au compas. Ainsi, est un nombre constructible, mais ni ni π ne le sont. C'est effectivement en termes de longueurs que pensaient les mathématiciens grecs et ceux qui, à leur suite, ont cherché à déterminer quels étaient les points et les nombres constructibles de cette façon.
ÉdentementL' est une pathologie correspondant à l'absence de dents dans une bouche adulte. L'édentement commence lorsqu'au moins une dent manque à la denture d'un adulte, hors dent de sagesse. L’édentement complet ou édentement total représente une situation de handicap majeur, . Cette pathologie concerne environ 158 millions de personnes dans le monde en 2010, soit 2,3 % de la population mondiale. L'édentement était une pathologie autrefois fort commune, mais aujourd'hui cette pathologie concerne en premier lieu les personnes âgées et/ou précaires dans les pays développés.
Analyse non standardEn mathématiques, et plus précisément en analyse, l'analyse non standard est un ensemble d'outils développés depuis 1960 afin de traiter la notion d'infiniment petit de manière rigoureuse. Pour cela, une nouvelle notion est introduite, celle d'objet standard (s'opposant à celle d'objet non standard), ou plus généralement de modèle standard ou de modèle non standard. Cela permet de présenter les principaux résultats de l'analyse sous une forme plus intuitive que celle exposée traditionnellement depuis le .
Ordre monomialEn mathématiques, un ordre monomial est un ordre total sur l'ensemble des monômes d'un anneau de polynômes donné, compatible avec la multiplication, c'est-à-dire : Pour tout monôme , si deux monômes et satisfont selon l'ordre monomial, alors . Les ordres monomiaux sont le plus souvent utilisés pour le calcul des bases de Gröbner et la division multivariée. En particulier, la propriété dêtre une base de Gröbner est toujours relative à un ordre monomial spécifique.
ForcingEn mathématiques, et plus précisément en logique mathématique, le forcing est une technique inventée par Paul Cohen pour prouver des résultats de cohérence et d'indépendance en théorie des ensembles. Elle a été utilisée pour la première fois en 1962 pour prouver l'indépendance de l'hypothèse du continu vis-à-vis de la théorie ZFC. Combinée avec la technique des modèles de permutation de Fraenkel-Mostowski-Specker, elle a permis également d'établir l'indépendance de l'axiome du choix relativement à ZF.