Optimisation convexevignette|320x320px|Optimisation convexe dans un espace en deux dimensions dans un espace contraint L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive). La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions.
Dualité (optimisation)En théorie de l'optimisation, la dualité ou principe de dualité désigne le principe selon lequel les problèmes d'optimisation peuvent être vus de deux perspectives, le problème primal ou le problème dual, et la solution du problème dual donne une borne inférieure à la solution du problème (de minimisation) primal. Cependant, en général les valeurs optimales des problèmes primal et dual ne sont pas forcément égales : cette différence est appelée saut de dualité. Pour les problèmes en optimisation convexe, ce saut est nul sous contraintes.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Source de courantUne source de courant est un dispositif pouvant produire un courant électrique constant fonctionnant sur une plage de tension donnée. vignette|Source de courant parfaite (rouge) ; source de courant idéale sur une plage de tension (vert) ; source de courant avec résistance en parallèle (turquoise). Ce dispositif produit un courant stable I quelle que soit la tension à ses bornes. Une source de courant réelle a une résistance interne en parallèle de très grande valeur (infinie dans le cas d'une source idéale).
Global optimizationGlobal optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .
Mesure de courantEn génie électrique, une mesure de courant est une des techniques utilisées pour évaluer la valeur d'un courant électrique dans un circuit électrique (exprimé en ampères). Il existe plusieurs méthodes de mesure de courant, le choix de l'une d'entre elles dépend des différentes exigences : la nature du courant, continu ou alternatif, la grandeur du courant à mesurer (du picoampère à des dizaines de milliers d'ampères), de la complexité et de l'impact de la mesure sur le fonctionnement du système, du coût, de la précision, de la bande passante, de robustesse, etc.
Art algorithmiqueL'art algorithmique, également connu sous le nom d'art des algorithmes, est l'art, et plus précisément l'art visuel, dont la conception est générée par un algorithme. Les artistes algorithmiques sont parfois appelés algoristes. L'art algorithmique est un sous-domaine de l'art génératif (généré par un système autonome) et est lié à l'art des systèmes (influencé par la théorie des systèmes). L'art fractal est un exemple d'art algorithmique. gauche|vignette|Figures géométriques arabes dans le temple de Darb-e Emam à Isfahan, précurseurs de l'art algorithmique.
Optimisation non linéaireEn optimisation, vue comme branche des mathématiques, l'optimisation non linéaire (en anglais : nonlinear programming – NLP) s'occupe principalement des problèmes d'optimisation dont les données, i.e., les fonctions et ensembles définissant ces problèmes, sont non linéaires, mais sont aussi différentiables autant de fois que nécessaire pour l'établissement des outils théoriques, comme les conditions d'optimalité, ou pour la bonne marche des algorithmes de résolution qui y sont introduits et analysés.
Optimisation multiobjectifL'optimisation multiobjectif (appelée aussi Programmation multi-objective ou optimisation multi-critère) est une branche de l'optimisation mathématique traitant spécifiquement des problèmes d'optimisation ayant plusieurs fonctions objectifs. Elle se distingue de l'optimisation multidisciplinaire par le fait que les objectifs à optimiser portent ici sur un seul problème. Les problèmes multiobjectifs ont un intérêt grandissant dans l'industrie où les responsables sont contraints de tenter d'optimiser des objectifs contradictoires.
Courant électriqueUn courant électrique est un mouvement d'ensemble de porteurs de charges électriques, généralement des électrons, au sein d'un matériau conducteur. Ces déplacements sont imposés par l'action de la force électromagnétique, dont l'interaction avec la matière est le fondement de l'électricité. On doit au physicien français André-Marie Ampère la distinction entre courant et tension électriques.