Quantification (logique)vignette|Symboles mathématiques des deux quantificateurs logiques les plus courants.|236px En mathématiques, les expressions « pour tout » (ou « quel que soit ») et « il existe », utilisées pour formuler des propositions mathématiques dans le calcul des prédicats, sont appelées des quantifications. Les symboles qui les représentent en langage formel sont appelés des quantificateurs (ou autrefois des quanteurs). La quantification universelle (« pour tout ... » ou « quel que soit ... ») se dénote par le symbole ∀ (un A à l'envers).
Universal quantificationIn mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any", "for all", or "for any". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other words, it is the predication of a property or relation to every member of the domain. It asserts that a predicate within the scope of a universal quantifier is true of every value of a predicate variable.
Quantification existentielleEn mathématiques et en logique, plus précisément en calcul des prédicats, l'existence d'un objet x satisfaisant une certaine propriété, ou prédicat, P se note ∃x P(x), où le symbole mathématique ∃, lu « il existe », est le quantificateur existentiel, et P(x) le fait pour l'objet x d'avoir la propriété P. L'objet x a la propriété P(x) s'exprime par une formule du calcul des prédicats.
Branching quantifierIn logic a branching quantifier, also called a Henkin quantifier, finite partially ordered quantifier or even nonlinear quantifier, is a partial ordering of quantifiers for Q ∈ {∀,∃}. It is a special case of generalized quantifier. In classical logic, quantifier prefixes are linearly ordered such that the value of a variable ym bound by a quantifier Qm depends on the value of the variables y1, ..., ym−1 bound by quantifiers Qy1, ..., Qym−1 preceding Qm. In a logic with (finite) partially ordered quantification this is not in general the case.
Unicité (mathématiques)En mathématiques, l'unicité d'un objet satisfaisant certaines propriétés est le fait que tout objet satisfaisant les mêmes propriétés lui est égal. Autrement dit, il ne peut exister deux objets différents satisfaisant ces mêmes propriétés. Cependant, une démonstration de l'unicité ne suffit pas a priori pour en déduire l'existence de l'objet. La conjonction de l'existence et de l'unicité est usuellement notée à l'aide du quantificateur « ∃! ».
Expressionnisme abstraitvignette|Cubi VI de David Smith, sculpture expressionniste abstraite exposée au musée d'Israël, à Jérusalem. Lexpressionnisme abstrait est un mouvement artistique qui s'est développé peu après la Seconde Guerre mondiale aux États-Unis. C'est aussi un élément central de l'école de New York, « école » qui a rassemblé les artistes (poètes, peintres, musiciens...) d'avant-garde actifs à New York et aux États-Unis avant et après la Seconde Guerre mondiale. On parle d'expressionnisme abstrait pour un certain type de peinture, de sculpture et de photographie.
Art abstraitvignette| Eugène Carrière, Le Sommeil, lithographie (éditions A. Vollard, 1897). vignette|Vassily Kandinsky, sans titre (Étude pour composition VII, Première abstraction), 1913 (datée de « 1910 »), mine graphite, encre de Chine et aquarelle sur papier (), Musée national d'Art moderne (MNAM), Paris. thumb| Otto Freundlich, Composition, 1911, huile sur toile (), Musée d'art moderne de Paris. vignette|Arthur Dove, Nature Symbolized No.2, vers 1911, pastel sur papier sur isorel (), Art Institute of Chicago, lequel fut à Paris entre 1907 et 1909, exposant avec les fauves.
Algèbre généraleL'algèbre générale, ou algèbre abstraite, est la branche des mathématiques qui porte principalement sur l'étude des structures algébriques et de leurs relations. L'appellation algèbre générale s'oppose à celle d'algèbre élémentaire ; cette dernière enseigne le calcul algébrique, c'est-à-dire les règles de manipulation des formules et des expressions algébriques. Historiquement, les structures algébriques sont apparues dans différents domaines des mathématiques, et n'y ont pas été étudiées séparément.
Abstract ImagistsAbstract Imagists is a term derived from a 1961 exhibition in the Guggenheim Museum, New York called American Abstract Expressionists and Imagists. This exhibition was the first in the series of programs for the investigation of tendencies in American and European painting and sculpture. It had been recognized that the paintings of Josef Albers, Barnett Newman, Mark Rothko, Adolph Gottlieb, Ad Reinhardt, Clyfford Still and Robert Motherwell were all very different yet the symbolic content was achieved "through dramatic statement of isolated and highly simplified elements.
Dynamic testingDynamic testing (or dynamic analysis) is a term used in software engineering to describe the testing of the dynamic behavior of code. That is, dynamic analysis refers to the examination of the physical response from the system to variables that are not constant and change with time. In dynamic testing the software must actually be compiled and run. It involves working with the software, giving input values and checking if the output is as expected by executing specific test cases which can be done manually or with the use of an automated process.