Groupe abélienEn mathématiques, plus précisément en algèbre, un groupe abélien (du nom de Niels Abel), ou groupe commutatif, est un groupe dont la loi de composition interne est commutative. Vu autrement, un groupe commutatif peut aussi être défini comme un module sur l'anneau commutatif des entiers relatifs ; l'étude des groupes abéliens apparaît alors comme un cas particulier de la théorie des modules. On sait classifier de façon simple et explicite les groupes abéliens de type fini à isomorphisme près, et en particulier décrire les groupes abéliens finis.
PseudovecteurEn physique, un pseudovecteur ou vecteur axial est un vecteur de dimension 3 dont le sens dépend de l'orientation de l'espace. Plus précisément, l'inversion de l'orientation de l'espace se traduit par un changement de sens du pseudovecteur qui est donc changé en son opposé. On parle de pseudovecteurs par opposition aux vecteurs « ordinaires » (dits polaires) qui sont invariants par une telle inversion. Le produit vectoriel de deux vecteurs polaires est l'exemple type du pseudovecteur.
Dérivée de LieLa dérivée de Lie est une opération de différentiation naturelle sur les champs de tenseurs, en particulier les formes différentielles, généralisant la dérivation directionnelle d'une fonction sur un ouvert de ou plus généralement sur une variété différentielle. On note ici M une variété différentielle de dimension n, ΩM l'espace des formes différentielles sur M et X un champ de vecteurs sur M. On peut définir la dérivée de Lie des formes différentielles sur M essentiellement de deux façons.
Superalgèbre de LieUne superalgèbre de Lie est une extension de la notion d'algèbre de Lie par l'ajout d'une Z-graduation. Cette graduation sépare la superalgèbre en la somme directe d'une partie paire et d'une partie impaire. Cette structure est utilisée en physique théorique pour décrire la supersymétrie. Les éléments de l'algèbre peuvent y être représentés par des opérateurs différentiels. Dans la plupart de ces théories, les éléments pairs correspondent aux bosons et les éléments impairs aux fermions.
Tenseur de WeylEn géométrie riemannienne, le tenseur de Weyl, nommé en l'honneur d'Hermann Weyl, représente la partie du tenseur de Riemann ne possédant pas de trace. En notant respectivement R_abcd, R_ab, R et g_ab le tenseur de Riemann, le tenseur de Ricci, la courbure scalaire et le tenseur métrique, le tenseur de Weyl C_abcd s'écrit où n est la dimension de l'espace considéré. En particulier, en relativité générale, où l'on considère presque exclusivement des espaces-temps de dimension 4, on a En relativité générale, le tenseur de Ricci est lié à la présence de matière ; en l'absence de matière, le tenseur de Ricci est nul.
Longueur d'un moduleLa longueur d'un module M sur un anneau A est un entier naturel ou l'infini. Elle généralise d'une certaine manière la notion de dimension d'un espace vectoriel sur un corps. Les modules de longueur finie ont beaucoup de particularités généralisant celles des espaces vectoriels de dimension finie. Les modules simples sont les modules M non nuls qui n'ont pas d'autres sous-modules que {0} et M. Par exemple, un espace vectoriel est simple en tant que module si et seulement si c'est une droite vectorielle.
Diviseur (géométrie algébrique)En mathématiques, plus précisément en géométrie algébrique, les diviseurs sont une généralisation des sous-variétés de codimension 1 de variétés algébriques ; deux généralisations différentes sont d'un usage commun : les diviseurs de Weil et les diviseurs de Cartier. Les deux concepts coïncident dans les cas des variétés non singulières. En géométrie algébrique, comme en géométrie analytique complexe, ou en géométrie arithmétique, les diviseurs forment un groupe qui permet de saisir la nature d'un schéma (une variété algébrique, une surface de Riemann, un anneau de Dedekind.
Quasi-isometryIn mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces. The concept of quasi-isometry is especially important in geometric group theory, following the work of Gromov.