Algèbre associativevignette|Relations entre certaines structures algébriques. En mathématiques, une algèbre associative (sur un anneau commutatif A) est une des structures algébriques utilisées en algèbre générale. C'est un anneau (ou simplement un pseudo-anneau) B muni d'une structure supplémentaire de module sur A et tel que la loi de multiplication de l'anneau B soit A-bilinéaire. C'est donc un cas particulier d'algèbre sur un anneau. Soit A un anneau commutatif. On dit que (B , + , . , × ) est une A-algèbre associative lorsque : (B , + , .
Timeline of category theory and related mathematicsThis is a timeline of category theory and related mathematics. Its scope ("related mathematics") is taken as: of abstract algebraic structures including representation theory and universal algebra; Homological algebra; Homotopical algebra; Topology using categories, including algebraic topology, categorical topology, quantum topology, low-dimensional topology; Categorical logic and set theory in the categorical context such as algebraic set theory; Foundations of mathematics building on categories, for instance topos theory; Abstract geometry, including algebraic geometry, categorical noncommutative geometry, etc.
Module libreEn algèbre, un module libre est un module M qui possède une base B, c'est-à-dire un sous-ensemble de M tel que tout élément de M s'écrive de façon unique comme combinaison linéaire (finie) d'éléments de B. Une base de M est une partie B de M qui est à la fois : génératrice pour M, c'est-à-dire que tout élément de M est combinaison linéaire d'éléments de B ; libre, c'est-à-dire que pour toutes familles finies (ei)1≤i≤n d'éléments de B deux à deux distincts et (ai)1≤i≤n d'éléments de l'anneau sous-jacent telles que a1e1 + .
Alexandre GrothendieckAlexandre Grothendieck, né Alexander Grothendieck (prononcé en allemand : ), est un mathématicien français, né le à Berlin et mort le à Saint-Lizier, près de Saint-Girons (Ariège). Il est resté longtemps apatride tout en vivant principalement en France ; il a acquis la nationalité française en 1971. Il est considéré comme le refondateur de la géométrie algébrique et, à ce titre, comme l'un des plus grands mathématiciens du . Il était connu pour son intuition extraordinaire et sa capacité de travail exceptionnelle.
Complexe simplicialthumb|Exemple d'un complexe simplicial.En mathématiques, un complexe simplicial est un objet géométrique déterminé par une donnée combinatoire et permettant de décrire certains espaces topologiques en généralisant la notion de triangulation d'une surface. Un tel objet se présente comme un graphe avec des sommets reliés par des arêtes, sur lesquelles peuvent se rattacher des faces triangulaires, elles-mêmes bordant éventuellement des faces de dimension supérieure, etc.
Homological algebraHomological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of modules and syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of .
Cartesian monoidal categoryIn mathematics, specifically in the field known as , a where the monoidal ("tensor") product is the is called a cartesian monoidal category. Any with finite products (a "finite product category") can be thought of as a cartesian monoidal category. In any cartesian monoidal category, the terminal object is the monoidal unit. , a monoidal finite coproduct category with the monoidal structure given by the coproduct and unit the initial object is called a cocartesian monoidal category, and any finite coproduct category can be thought of as a cocartesian monoidal category.
Foncteur HomEn mathématiques, le foncteur Hom est un foncteur associé aux morphismes de la catégorie des ensembles. Il est central en théorie des catégories, notamment du fait de son rôle dans le lemme de Yoneda et parce qu'il permet de définir le foncteur Ext. Soit une catégorie localement petite. Pour tout couple d'objets A et B dans cette catégorie, un morphisme induit une fonction pour tout objet X.
Symmetric monoidal categoryIn , a branch of mathematics, a symmetric monoidal category is a (i.e. a category in which a "tensor product" is defined) such that the tensor product is symmetric (i.e. is, in a certain strict sense, naturally isomorphic to for all objects and of the category). One of the prototypical examples of a symmetric monoidal category is the over some fixed field k, using the ordinary tensor product of vector spaces.
Catégorie abélienneEn mathématiques, les catégories abéliennes forment une famille de catégories qui contient celle des groupes abéliens. Leur étude systématique a été instituée par Alexandre Grothendieck pour éclairer les liens qui existent entre différentes théories cohomologiques, comme la cohomologie des faisceaux ou la cohomologie des groupes. Toute catégorie abélienne est additive. Une catégorie abélienne est une catégorie additive dans laquelle on peut additionner les flèches et définir pour toute flèche les notions de noyau, conoyau et .