Homotopy categoryIn mathematics, the homotopy category is a built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed below. More generally, instead of starting with the category of topological spaces, one may start with any and define its associated homotopy category, with a construction introduced by Quillen in 1967. In this way, homotopy theory can be applied to many other categories in geometry and algebra.
Monade (théorie des catégories)Une monade est une construction catégorique qui mime formellement le comportement que les monoïdes ont en algèbre. Introduite par Roger Godement sous le nom de « construction standard », la notion est d'abord diffusée sous le nom de triple avant d'être baptisée monade par Jean Bénabou. Elles permettent notamment de formuler des adjonctions et ont (au travers des comonades) un rôle important en géométrie algébrique, notamment en théorie des topos. Elles permettent également de définir les , dont les .
FoncteurDans la théorie des catégories, un foncteur est une construction transformant les objets et morphismes d'une catégorie en ceux d'une autre catégorie, d'une façon compatible. On parle alors d'une construction fonctorielle ou de fonctorialité. Une telle construction est donc un morphisme entre deux catégories. Historiquement, les foncteurs furent introduits en topologie algébrique, associant aux espaces topologiques et aux applications continues des objets algébriques tels que les groupes d'homotopie et les morphismes de groupes, permettant ainsi un véritable calcul d'invariants caractérisant ces espaces.
Catégorie des modulesEn mathématiques, la catégorie des modules sur un monoïde R est une construction qui rend compte abstraitement des propriétés observées dans l'étude des modules sur un anneau, en les généralisant. L'étude de catégories de modules apparaît naturellement en théorie des représentations et en géométrie algébrique. Puisqu'un R-module est un espace vectoriel lorsque R est un corps commutatif, on peut dans un tel cas identifier la catégorie des modules sur R à la sur le corps R.
Catégorie enrichieUne catégorie enrichie sur une catégorie monoïdale , ou -catégorie est une extension du concept mathématique de catégorie, où les morphismes, au lieu de former une classe ou un ensemble dépourvu de structure, sont des éléments de . Le concept de catégorie enrichie part de l'observation que dans de nombreuses situations, les morphismes ont une structure naturelle d'espace vectoriel ou topologique. La catégorie doit être monoïdale afin de pouvoir définir la composition des morphismes, appelés dans ce cas hom-objets au lieu de hom-sets.
Foncteur exactEn mathématiques, un foncteur exact est un foncteur qui commute aux limites inductives et projectives. De manière équivalente, c'est un foncteur qui préserve les suites exactes de catégories abéliennes et c'est de cela que vient la dénomination. Des foncteurs de ce type apparaissent naturellement en homologie et d'une manière générale en théorie des catégories, où leurs propriétés permettent des calculs élégants. Le « défaut d'exactitude » est mesuré par les foncteurs dérivés, par exemple les foncteurs Tor et Ext.
Forgetful functorIn mathematics, in the area of , a forgetful functor (also known as a stripping functor) 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output. For an algebraic structure of a given signature, this may be expressed by curtailing the signature: the new signature is an edited form of the old one. If the signature is left as an empty list, the functor is simply to take the underlying set of a structure.
Module projectifEn mathématiques, un module projectif est un module P (à gauche par exemple) sur un anneau A tel que pour tout morphisme surjectif f : N → M entre deux A-modules (à gauche) et pour tout morphisme g : P → M, il existe un morphisme h : P → N tel que g = fh, c'est-à-dire tel que le diagramme suivant commute : center Autrement dit : P est projectif si pour tout module N, tout morphisme de P vers un quotient de N se factorise par N.
Module sur un anneauEn mathématiques, et plus précisément en algèbre générale, au sein des structures algébriques, : pour un espace vectoriel, l'ensemble des scalaires forme un corps tandis que pour un module, cet ensemble est seulement muni d'une structure d'anneau (unitaire, mais non nécessairement commutatif). Une partie des travaux en théorie des modules consiste à retrouver les résultats de la théorie des espaces vectoriels, quitte pour cela à travailler avec des anneaux plus maniables, comme les anneaux principaux.
Closed monoidal categoryIn mathematics, especially in , a closed monoidal category (or a monoidal closed category) is a that is both a and a in such a way that the structures are compatible. A classic example is the , Set, where the monoidal product of sets and is the usual cartesian product , and the internal Hom is the set of functions from to . A non- example is the , K-Vect, over a field . Here the monoidal product is the usual tensor product of vector spaces, and the internal Hom is the vector space of linear maps from one vector space to another.