Connexion de KoszulEn géométrie différentielle, une connexion (de Koszul) est un opérateur sur les sections d'un fibré vectoriel. Cette notion a été introduite par Jean-Louis Koszul en 1950 et formalise le transport parallèle de vecteurs le long d'une courbe en termes d'équation différentielle ordinaire. Les connexions sont des objets localement définis auxquels sont associées les notions de courbure et de torsion. L'un des exemples les plus simples de connexions de Koszul sans torsion est la connexion de Levi-Civita naturellement définie sur le fibré tangent de toute variété riemannienne.
Méthode itérativeEn analyse numérique, une méthode itérative est un procédé algorithmique utilisé pour résoudre un problème, par exemple la recherche d’une solution d’un système d'équations ou d’un problème d’optimisation. En débutant par le choix d’un point initial considéré comme une première ébauche de solution, la méthode procède par itérations au cours desquelles elle détermine une succession de solutions approximatives raffinées qui se rapprochent graduellement de la solution cherchée. Les points générés sont appelés des itérés.
Galaxy groups and clustersGalaxy groups and clusters are the largest known gravitationally bound objects to have arisen thus far in the process of cosmic structure formation. They form the densest part of the large-scale structure of the Universe. In models for the gravitational formation of structure with cold dark matter, the smallest structures collapse first and eventually build the largest structures, clusters of galaxies. Clusters are then formed relatively recently between 10 billion years ago and now.
Théorie des ensembles approximatifsThéorie des ensembles approximatifs – est un formalisme mathématique proposé en 1982 par le professeur Zdzisław Pawlak. Elle généralise la théorie des ensembles classique. Un ensemble approximatif (anglais : rough set) est un objet mathématique basé sur la logique 3 états. Dans sa première définition, un ensemble approximatif est une paire de deux ensembles : une approximation inférieure et une approximation supérieure. Il existe également un type d'ensembles approximatifs défini par une paire d'ensembles flous (anglais : fuzzy set).
Connexion de Levi-CivitaEn géométrie riemannienne, la connexion de Levi-Civita est une connexion de Koszul naturellement définie sur toute variété riemannienne ou par extension sur toute variété pseudo-riemannienne. Ses propriétés caractérisent la variété riemannienne. Notamment, les géodésiques, courbes minimisant localement la distance riemannienne, sont exactement les courbes pour lesquelles le vecteur vitesse est parallèle. De plus, la courbure de la variété se définit à partir de cette connexion ; des conditions sur la courbure imposent des contraintes topologiques sur la variété.
Notion à contenu variableUne notion à contenu variable (anglais : fuzzy concept) est un concept flou qui présente plus d'une solution interprétative possible dans l'interprétation d'un texte. Il s'agit d'un concept à texture ouverte qui présente un noyau de sens clair sur lequel il y a consensus sur le sens ainsi qu'une zone de pénombre sur laquelle il n'y a pas de consensus, d'après le philosophe du droit H.L.A. Hart. En droit, les théoriciens de l'interprétation des lois ont recours à l'idée de notion à contenu variable lorsque le législateur utilise des concepts à contours indéfinis dans la rédaction d'un texte législatif.
Neuro-fuzzyIn the field of artificial intelligence, the designation neuro-fuzzy refers to combinations of artificial neural networks and fuzzy logic. Neuro-fuzzy hybridization results in a hybrid intelligent system that combines the human-like reasoning style of fuzzy systems with the learning and connectionist structure of neural networks. Neuro-fuzzy hybridization is widely termed as fuzzy neural network (FNN) or neuro-fuzzy system (NFS) in the literature.
Prototypevignette|Photographie d'un prototype BMW : la BMW Nazca C2 Dans le domaine de l'industrie et plus généralement de la recherche et développement (R&D), un prototype est selon la définition de l'OCDE , mais il s'agit aussi parfois d'un exemplaire incomplet (et non définitif) de ce que pourra être un produit (éventuellement de type logiciel, ou de type « service »Djellal, F., Gallouj, C., Gallouj, F., Francoz, D., & Jacquin, Y. (2001).
Universal setIn set theory, a universal set is a set which contains all objects, including itself. In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set. Many set theories do not allow for the existence of a universal set. There are several different arguments for its non-existence, based on different choices of axioms for set theory. In Zermelo–Fraenkel set theory, the axiom of regularity and axiom of pairing prevent any set from containing itself.
Metric connectionIn mathematics, a metric connection is a connection in a vector bundle E equipped with a bundle metric; that is, a metric for which the inner product of any two vectors will remain the same when those vectors are parallel transported along any curve. This is equivalent to: A connection for which the covariant derivatives of the metric on E vanish. A principal connection on the bundle of orthonormal frames of E. A special case of a metric connection is a Riemannian connection; there is a unique such which is torsion free, the Levi-Civita connection.