Cycle thermodynamiqueUn cycle thermodynamique est une suite de transformations successives qui part d'un système thermodynamique dans un état donné, le transforme et le ramène finalement à son état initial, de manière à pouvoir recommencer le cycle. Au cours du cycle, le système voit sa température, sa pression ou d'autres paramètres d'état varier, tandis qu'il échange du travail et réalise un transfert thermique avec l'extérieur. Il existe de nombreux cycles thermodynamiques, dont voici quelques-uns.
Capacité thermique volumiqueLa capacité thermique volumique d'un matériau, anciennement appelée chaleur volumique, est sa capacité à emmagasiner la chaleur rapportée à son volume. Elle est définie par la chaleur nécessaire pour élever de la température d'un mètre cube de matériau. C'est une grandeur intensive égale à la capacité thermique rapportée au volume du corps étudié. C'est donc le produit de la masse volumique (ρ) d'un matériau et de sa capacité thermique massique (). Elle s'exprime en joules par mètre cube-kelvin (soit ou parfois ).
Chaleur (thermodynamique)vignette|Le Soleil et la Terre constituent un exemple continu de processus de chauffage. Une partie du rayonnement thermique du Soleil frappe et chauffe la Terre. Par rapport au Soleil, la Terre a une température beaucoup plus basse et renvoie donc beaucoup moins de rayonnement thermique au Soleil. La chaleur dans ce processus peut être quantifiée par la quantité nette et la direction (Soleil vers Terre) d'énergie échangée lors du transfert thermique au cours d'une période de temps donnée.
Processus polytropiqueEn thermodynamique, un processus polytropique est une transformation réversible impliquant un transfert thermique (échange de chaleur) partiel entre le système étudié et son extérieur. La loi polytropique peut représenter diverses conditions de transformation. La loi de Laplace en est le cas particulier applicable aux transformations isentropiques (à entropie constante, c'est-à-dire adiabatiques, à échange de chaleur nul).
Relations between heat capacitiesIn thermodynamics, the heat capacity at constant volume, , and the heat capacity at constant pressure, , are extensive properties that have the magnitude of energy divided by temperature. The laws of thermodynamics imply the following relations between these two heat capacities (Gaskell 2003:23): Here is the thermal expansion coefficient: is the isothermal compressibility (the inverse of the bulk modulus): and is the isentropic compressibility: A corresponding expression for the difference in specific heat capacities (intensive properties) at constant volume and constant pressure is: where ρ is the density of the substance under the applicable conditions.
Température thermodynamiqueLa température thermodynamique est une formalisation de la notion expérimentale de température et constitue l’une des grandeurs principales de la thermodynamique. Elle est intrinsèquement liée à l'entropie. Usuellement notée , la température thermodynamique se mesure en kelvins (symbole K). Encore souvent qualifiée de « température absolue », elle constitue une mesure absolue parce qu’elle traduit directement le phénomène physique fondamental qui la sous-tend : l’agitation des constituant la matière (translation, vibration, rotation, niveaux d'énergie électronique).
DérivéeEn mathématiques, la dérivée d'une fonction d'une variable réelle mesure l'ampleur du changement de la valeur de la fonction (valeur de sortie) par rapport à un petit changement de son argument (valeur d'entrée). Les calculs de dérivées sont un outil fondamental du calcul infinitésimal. Par exemple, la dérivée de la position d'un objet en mouvement par rapport au temps est la vitesse (instantanée) de l'objet. La dérivée d'une fonction est une fonction qui, à tout nombre pour lequel admet un nombre dérivé, associe ce nombre dérivé.
Vibrationthumb Une vibration est un mouvement d'oscillation mécanique autour d'une position d'équilibre stable ou d'une trajectoire moyenne. La vibration d'un système peut être libre ou forcée. Tout mouvement vibratoire peut être défini par les caractéristiques suivantes : un degré de liberté ; deux ou plusieurs degrés de liberté ; Une masse libre dans l'espace a naturellement six degrés de liberté : trois translations (notées Tx, Ty, Tz) ; trois rotations (notées Rx, Ry, Rz).
Thermodynamic databases for pure substancesThermodynamic databases contain information about thermodynamic properties for substances, the most important being enthalpy, entropy, and Gibbs free energy. Numerical values of these thermodynamic properties are collected as tables or are calculated from thermodynamic datafiles. Data is expressed as temperature-dependent values for one mole of substance at the standard pressure of 101.325 kPa (1 atm), or 100 kPa (1 bar). Both of these definitions for the standard condition for pressure are in use.
Dérivée partielleEn mathématiques, la dérivée partielle d'une fonction de plusieurs variables est sa dérivée par rapport à l'une de ses variables, les autres étant gardées constantes. C'est une notion de base de l'analyse en dimension , de la géométrie différentielle et de l'analyse vectorielle. La dérivée partielle de la fonction par rapport à la variable est souvent notée . Si est une fonction de et sont les accroissements infinitésimaux de respectivement, alors l'accroissement infinitésimal correspondant de est : Cette expression est la « différentielle totale » de , chaque terme dans la somme étant une « différentielle partielle » de .