Iterative reconstructionIterative reconstruction refers to iterative algorithms used to reconstruct 2D and 3D images in certain imaging techniques. For example, in computed tomography an image must be reconstructed from projections of an object. Here, iterative reconstruction techniques are usually a better, but computationally more expensive alternative to the common filtered back projection (FBP) method, which directly calculates the image in a single reconstruction step.
Corrélation de SpearmanEn statistique, la corrélation de Spearman ou rho de Spearman, nommée d'après Charles Spearman (1863-1945) et souvent notée par la lettre grecque (rho) ou est une mesure de dépendance statistique non paramétrique entre deux variables. La corrélation de Spearman est étudiée lorsque deux variables statistiques semblent corrélées sans que la relation entre les deux variables soit de type affine. Elle consiste à trouver un coefficient de corrélation, non pas entre les valeurs prises par les deux variables mais entre les rangs de ces valeurs.
Simulation informatiquevignette|upright=1|Une simulation informatique, sur une étendue de , de l'évolution du typhon Mawar produite par le Modèle météorologique Weather Research and Forecasting La simulation informatique ou numérique est l'exécution d'un programme informatique sur un ordinateur ou réseau en vue de simuler un phénomène physique réel et complexe (par exemple : chute d’un corps sur un support mou, résistance d’une plateforme pétrolière à la houle, fatigue d’un matériau sous sollicitation vibratoire, usure d’un roulem
Tau de KendallEn statistique, le tau de Kendall (ou de Kendall) est une statistique qui mesure l'association entre deux variables. Plus spécifiquement, le tau de Kendall mesure la corrélation de rang entre deux variables. Elle est nommée ainsi en hommage à Maurice Kendall qui en a développé l'idée dans un article de 1938 bien que Gustav Fechner ait proposé une idée similaire appliquée aux séries temporelles dès 1897. Soit un ensemble d'observations des variables jointes et tel que les valeurs des et sont uniques.
Matrice creuseDans la discipline de l'analyse numérique des mathématiques, une matrice creuse est une matrice contenant beaucoup de zéros. Conceptuellement, les matrices creuses correspondent aux systèmes qui sont peu couplés. Si on considère une ligne de balles dont chacune est reliée à ses voisines directes par des élastiques, ce système serait représenté par une matrice creuse. Au contraire, si chaque balle de la ligne est reliée à toutes les autres balles, ce système serait représenté par une matrice dense.
Matrice d'adjacenceEn mathématiques, en théorie des graphes, en informatique, une matrice d'adjacence pour un graphe fini à n sommets est une matrice de dimension n × n dont l'élément non diagonal a est le nombre d'arêtes liant le sommet i au sommet j. L'élément diagonal a est le nombre de boucles au sommet i (pour des graphes simples, ce nombre est donc toujours égal à 0 ou 1). Cet outil mathématique est très utilisé comme structure de données en informatique (tout comme la représentation par liste d'adjacence), mais intervient aussi naturellement dans les chaînes de Markov.
Sparse dictionary learningSparse dictionary learning (also known as sparse coding or SDL) is a representation learning method which aims at finding a sparse representation of the input data in the form of a linear combination of basic elements as well as those basic elements themselves. These elements are called atoms and they compose a dictionary. Atoms in the dictionary are not required to be orthogonal, and they may be an over-complete spanning set. This problem setup also allows the dimensionality of the signals being represented to be higher than the one of the signals being observed.
Covariance matrixIn probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of a given random vector. Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances (i.e., the covariance of each element with itself). Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions.
Rank correlationIn statistics, a rank correlation is any of several statistics that measure an ordinal association—the relationship between rankings of different ordinal variables or different rankings of the same variable, where a "ranking" is the assignment of the ordering labels "first", "second", "third", etc. to different observations of a particular variable. A rank correlation coefficient measures the degree of similarity between two rankings, and can be used to assess the significance of the relation between them.
Matrice laplacienneEn théorie des graphes, une matrice laplacienne, ou matrice de Laplace, est une matrice représentant un graphe. La matrice laplacienne d'un graphe G non orienté et non réflexif est définie par : où est la matrice des degrés de G et la matrice d'adjacence de G. Formellement : A la différence de la matrice d'adjacence d'un graphe, la matrice laplacienne a une interprétation algébrique ce qui rend son analyse spectrale fructueuse. Plus précisément la matrice correspond à l'opérateur de diffusion sur le graphe.