Interaction informationThe interaction information is a generalization of the mutual information for more than two variables. There are many names for interaction information, including amount of information, information correlation, co-information, and simply mutual information. Interaction information expresses the amount of information (redundancy or synergy) bound up in a set of variables, beyond that which is present in any subset of those variables. Unlike the mutual information, the interaction information can be either positive or negative.
Conditional mutual informationIn probability theory, particularly information theory, the conditional mutual information is, in its most basic form, the expected value of the mutual information of two random variables given the value of a third. For random variables , , and with support sets , and , we define the conditional mutual information as This may be written in terms of the expectation operator: . Thus is the expected (with respect to ) Kullback–Leibler divergence from the conditional joint distribution to the product of the conditional marginals and .
Variance (mathématiques)vignette|Exemple d'échantillons pour deux populations ayant la même moyenne mais des variances différentes. La population en rouge a une moyenne de 100 et une variance de 100 (écart-type = SD = standard deviation = 10). La population en bleu a une moyenne de 100 et une variance de (écart-type = SD = 50). En statistique et en théorie des probabilités, la variance est une mesure de la dispersion des valeurs d'un échantillon ou d'une variable aléatoire.
Théorie algorithmique de l'informationLa théorie algorithmique de l'information, initiée par Kolmogorov, Solomonov et Chaitin dans les années 1960, vise à quantifier et qualifier le contenu en information d'un ensemble de données, en utilisant la théorie de la calculabilité et la notion de machine universelle de Turing. Cette théorie permet également de formaliser la notion de complexité d'un objet, dans la mesure où l'on considère qu'un objet (au sens large) est d'autant plus complexe qu'il faut beaucoup d'informations pour le décrire, ou — à l'inverse — qu'un objet contient d'autant plus d'informations que sa description est longue.
Observed informationIn statistics, the observed information, or observed Fisher information, is the negative of the second derivative (the Hessian matrix) of the "log-likelihood" (the logarithm of the likelihood function). It is a sample-based version of the Fisher information. Suppose we observe random variables , independent and identically distributed with density f(X; θ), where θ is a (possibly unknown) vector.
Neural decodingNeural decoding is a neuroscience field concerned with the hypothetical reconstruction of sensory and other stimuli from information that has already been encoded and represented in the brain by networks of neurons. Reconstruction refers to the ability of the researcher to predict what sensory stimuli the subject is receiving based purely on neuron action potentials. Therefore, the main goal of neural decoding is to characterize how the electrical activity of neurons elicit activity and responses in the brain.
Variation of informationIn probability theory and information theory, the variation of information or shared information distance is a measure of the distance between two clusterings (partitions of elements). It is closely related to mutual information; indeed, it is a simple linear expression involving the mutual information. Unlike the mutual information, however, the variation of information is a true metric, in that it obeys the triangle inequality. Suppose we have two partitions and of a set into disjoint subsets, namely and .
Problème du char d'assaut allemandLe problème du char d'assaut allemand réfère à une estimation de la valeur maximale d'une loi uniforme discrète à partir d'un échantillonnage sans remplacement. Il tire son nom de son application par les Alliés de la Seconde Guerre mondiale afin d'estimer la production de chars d'assaut allemands. Le problème peut être abordé selon les approches d' ou bayésienne. Selon l'approche fréquentiste, le nombre total () est fonction du nombre d'échantillons () et de la valeur de l'échantillon le plus élevé () selon la relation suivante : On suppose que l'ennemi produit une série de chars immatriculés par des entiers en commençant par le chiffre 1.
Minimum-variance unbiased estimatorIn statistics a minimum-variance unbiased estimator (MVUE) or uniformly minimum-variance unbiased estimator (UMVUE) is an unbiased estimator that has lower variance than any other unbiased estimator for all possible values of the parameter. For practical statistics problems, it is important to determine the MVUE if one exists, since less-than-optimal procedures would naturally be avoided, other things being equal. This has led to substantial development of statistical theory related to the problem of optimal estimation.
ÉvaluationSelon Michel Vial, l'évaluation est le rapport que l'on entretient avec la valeur. L'homme est porteur de valeurs qu'il a reçu plus ou moins consciemment, qu'il convoque pour mesurer la valeur d'objets ou de produits, pour contrôler les procédures (vérifier leur conformité) ou encore interroger (rendre intelligible) le sens de ses pratiques : s'interroger sur la valeur, rendre intelligible les pratiques au moyen de l'évaluation située. Plus généralement, l'évaluation est un processus mental de l'agir humain.