Théorie de jauge supersymétriqueEn théorie quantique des champs, une théorie de jauge supersymétrique est une théorie possédant une ou plusieurs supersymétries (dans le cas de plusieurs supersymétries on parle de supersymétrie étendue) et incorporant également une symétrie de jauge tout comme les théories de jauge ordinaires non-supersymétriques. Les théories de jauge contenant toujours un ou plusieurs champs de jauge qui sont des champs de spin 1, la présence de la supersymétrie nécessite qu'un tel champ vectoriel soit accompagné d'un partenaire fermionique de spin 1/2 appelé jaugino.
Supersymmetry breakingIn particle physics, supersymmetry breaking is the process to obtain a seemingly non-supersymmetric physics from a supersymmetric theory which is a necessary step to reconcile supersymmetry with actual experiments. It is an example of spontaneous symmetry breaking. In supergravity, this results in a slightly modified counterpart of the Higgs mechanism where the gravitinos become massive. Supersymmetry breaking occurs at supersymmetry breaking scale.
Gauge covariant derivativeIn physics, the gauge covariant derivative is a means of expressing how fields vary from place to place, in a way that respects how the coordinate systems used to describe a physical phenomenon can themselves change from place to place. The gauge covariant derivative is used in many areas of physics, including quantum field theory and fluid dynamics and in a very special way general relativity. If a physical theory is independent of the choice of local frames, the group of local frame changes, the gauge transformations, act on the fields in the theory while leaving unchanged the physical content of the theory.
Gauge fixingIn the physics of gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct configuration of the system as an equivalence class of detailed local field configurations. Any two detailed configurations in the same equivalence class are related by a gauge transformation, equivalent to a shear along unphysical axes in configuration space.
Théorie quantique des champsvignette|296x296px|Ce diagramme de Feynman représente l'annihilation d'un électron et d'un positron, qui produit un photon (représenté par une ligne ondulée bleue). Ce photon se décompose en une paire quark-antiquark, puis l'antiquark émet un gluon (représenté par la courbe verte). Ce type de diagramme permet à la fois de représenter approximativement les processus physiques mais également de calculer précisément leurs propriétés, comme la section efficace de collision.
Sous-espace vectorielEn algèbre linéaire, un sous-espace vectoriel d'un espace vectoriel E, est une partie non vide F, de E, stable par combinaisons linéaires. Cette stabilité s'exprime par : la somme de deux vecteurs de F appartient à F ; le produit d'un vecteur de F par un scalaire appartient à F. Muni des lois induites, F est alors un espace vectoriel. L'intersection d'une famille non vide de sous-espaces de E est un sous-espace de E. La réunion d'une famille non vide de sous-espaces n'en est généralement pas un ; le sous-espace engendré par cette réunion est la somme de cette famille.
Combinaison linéaireEn mathématiques, une combinaison linéaire est une expression construite à partir d'un ensemble de termes en multipliant chaque terme par une constante et en ajoutant le résultat. Par exemple, une combinaison linéaire de x et y serait une expression de la forme ax + by, où a et b sont des constantes. Le concept de combinaison linéaire est central en algèbre linéaire et dans des domaines connexes des mathématiques. La majeure partie de cet article traite des combinaisons linéaires dans le contexte d'espace vectoriel sur un corps commutatif, et indique quelques généralisations à la fin de l'article.
Sous-espace vectoriel engendréDans un espace vectoriel E, le sous-espace vectoriel engendré par une partie A de E est le plus petit sous-espace vectoriel de E contenant A. C'est aussi l'ensemble des combinaisons linéaires de vecteurs de A. Le sous-espace vectoriel engendré par une famille de vecteurs est le plus petit sous-espace contenant tous les vecteurs de cette famille. Une famille de vecteurs ou une partie est dite génératrice de E si le sous-espace qu'elle engendre est l'espace entier E.
Stop squarkIn particle physics, a stop squark, symbol _top squark, is the superpartner of the top quark as predicted by supersymmetry (SUSY). It is a sfermion, which means it is a spin-0 boson (scalar boson). While the top quark is the heaviest known quark, the stop squark is actually often the lightest squark in many supersymmetry models. The stop squark is a key ingredient of a wide range of SUSY models that address the hierarchy problem of the Standard Model (SM) in a natural way.
RenormalisationEn théorie quantique des champs (ou QFT), en mécanique statistique des champs, dans la théorie des structures géométriques autosimilaires, une renormalisation est une manière, variable dans sa nature, de prendre la limite du continu quand certaines constructions statistiques et quantiques deviennent indéfinies. La renormalisation détermine la façon de relier les paramètres de la théorie quand ces paramètres à grande échelle diffèrent de leur valeur à petite échelle.