Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Cosmologie cyclique conformeLa cosmologie cyclique conforme (CCC), en Conformal cyclic cosmology, est un modèle cosmologique dans le cadre de la relativité générale, avancé par le physicien théoricien Roger Penrose, lauréat du prix Nobel de physique 2020. Dans la CCC, l'Univers se réitère à travers une série de cycles infinis, l'infinité temporelle future de chaque itération précédente étant identifiée à la singularité du Big Bang suivant. Roger Penrose affirme que . Roger Penrose a popularisé cette théorie dans son livre, de 2010, intitulé Les Cycles du temps : une nouvelle vision de l’Univers.
Relevé du décalage vers le rougedroite|vignette|300x300px|Le rendu des données du relevé 2dFGRS En astronomie, un relevé du décalage vers le rouge (en anglais redshift survey) est un relevé astronomique d'une section du ciel pour mesurer le décalage vers le rouge (redshift) des objets célestes. Il s'agit habituellement de galaxies, mais parfois aussi d'autres objets tels que les amas de galaxies ou les quasars. À l'aide de la loi de Hubble, le décalage vers le rouge peut être utilisé pour estimer la distance entre un objet et la Terre.
Méthode itérativeEn analyse numérique, une méthode itérative est un procédé algorithmique utilisé pour résoudre un problème, par exemple la recherche d’une solution d’un système d'équations ou d’un problème d’optimisation. En débutant par le choix d’un point initial considéré comme une première ébauche de solution, la méthode procède par itérations au cours desquelles elle détermine une succession de solutions approximatives raffinées qui se rapprochent graduellement de la solution cherchée. Les points générés sont appelés des itérés.
Méthode de Newtonvignette|Une itération de la méthode de Newton. En analyse numérique, la méthode de Newton ou méthode de Newton-Raphson est, dans son application la plus simple, un algorithme efficace pour trouver numériquement une approximation précise d'un zéro (ou racine) d'une fonction réelle d'une variable réelle. Cette méthode doit son nom aux mathématiciens anglais Isaac Newton (1643-1727) et Joseph Raphson (peut-être 1648-1715), qui furent les premiers à la décrire pour la recherche des solutions d'une équation polynomiale.
Vehicle simulation gameVehicle simulation games are a genre of video games which attempt to provide the player with a realistic interpretation of operating various kinds of vehicles. This includes automobiles, aircraft, watercraft, spacecraft, military vehicles, and a variety of other vehicles. The main challenge is to master driving and steering the vehicle from the perspective of the pilot or driver, with most games adding another challenge such as racing or fighting rival vehicles.
Méthode de JacobiLa méthode de Jacobi, due au mathématicien allemand Karl Jacobi, est une méthode itérative de résolution d'un système matriciel de la forme Ax = b. Pour cela, on utilise une suite x qui converge vers un point fixe x, solution du système d'équations linéaires. On cherche à construire, pour x donné, la suite x = F(x) avec . où est une matrice inversible. où F est une fonction affine. La matrice B = MN est alors appelée matrice de Jacobi.
Loi de Hubble-LemaîtreEn astronomie, la loi de Hubble-Lemaître (anciennement loi de Hubble) énonce que les galaxies s'éloignent les unes des autres à une vitesse approximativement proportionnelle à leur distance. Autrement dit, plus une galaxie est loin de nous, plus elle semble s'éloigner rapidement. Cette loi ne concerne que la partie de l'univers accessible aux observations. L'extrapolation de la loi de Hubble-Lemaître sur des distances plus grandes est possible, mais uniquement si l'univers demeure homogène et isotrope sur de plus grandes distances.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Extraction de racine carréeEn algorithmique et en analyse numérique, l'extraction de racine carrée est le processus qui consiste, étant donné un nombre, à en calculer la racine carrée. Il existe de nombreuses méthodes pour effectuer ce calcul. C'est un cas particulier de la recherche de calcul de la racine n-ième. La racine carrée d'un nombre pouvant être un nombre irrationnel, l'extraction de racine carrée est en général approchée. L'extraction de la racine carrée d'un nombre a est identique à la résolution de l'équation x - a = 0.