Motif (géométrie algébrique)La théorie des motifs est un domaine de recherche mathématique qui tente d'unifier les aspects combinatoires, topologiques et arithmétiques de la géométrie algébrique. Introduite au début des années 1960 et de manière conjecturale par Alexander Grothendieck afin de mettre au jour des propriétés supposées communes à différentes théories cohomologiques, elle se trouve au cœur de nombreux problèmes ouverts en mathématiques pures. En particulier, plusieurs propriétés des courbes elliptiques semblent motiviques par nature, comme la conjecture de Birch et Swinnerton-Dyer.
Catégorie dérivéeLa catégorie dérivée d'une catégorie est une construction, originellement introduite par Jean-Louis Verdier dans sa thèse et reprise dans SGA 41⁄2, qui permet notamment de raffiner et simplifier la théorie des foncteurs dérivés. Elle a amené à plusieurs développements importants, ainsi que des reformulations élégantes par exemple de la théorie des D-modules et des preuves de la qui généralise le vingt-et-unième problème de Hilbert. En particulier, le langage des catégories dérivées permet de simplifier des problèmes exprimés en termes de suites spectrales.
Coherent sheafIn mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information. Coherent sheaves can be seen as a generalization of vector bundles. Unlike vector bundles, they form an , and so they are closed under operations such as taking , , and cokernels.
Schéma (géométrie algébrique)En mathématiques, les schémas sont les objets de base de la géométrie algébrique, généralisant la notion de variété algébrique de plusieurs façons, telles que la prise en compte des multiplicités, l'unicité des points génériques et le fait d'autoriser des équations à coefficients dans un anneau commutatif quelconque.
Quot schemeIn algebraic geometry, the Quot scheme is a scheme parametrizing sheaves on a projective scheme. More specifically, if X is a projective scheme over a Noetherian scheme S and if F is a coherent sheaf on X, then there is a scheme whose set of T-points is the set of isomorphism classes of the quotients of that are flat over T. The notion was introduced by Alexander Grothendieck. It is typically used to construct another scheme parametrizing geometric objects that are of interest such as a Hilbert scheme.
Constructionvignette|upright|Les grues sont essentielles pour des travaux importants tels que les gratte-ciel. La construction est le fait d'assembler différents éléments d'un édifice en utilisant des matériaux et des techniques appropriées. Le secteur économique de la construction, appelé « bâtiment et travaux publics » (BTP) dans une partie de l'Europe francophone, regroupe toutes les activités de conception et de construction des bâtiments publics et privés, industriels ou non, et des infrastructures telles que les routes ou les canalisations.
Group schemeIn mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance.
Équivalence de MoritaEn algèbre, et plus précisément en théorie des anneaux, l'équivalence de Morita est une relation entre anneaux. Elle est nommée d'après le mathématicien japonais Kiiti Morita qui l'a introduite dans un article de 1958. L'étude d'un anneau consiste souvent à explorer la catégorie des modules sur cet anneau. Deux anneaux sont en équivalence de Morita précisément lorsque leurs catégories de modules sont équivalentes. L'équivalence de Morita présente surtout un intérêt dans l'étude des anneaux non commutatifs.
Spectre (topologie)En topologie algébrique, une branche des mathématiques, un spectre est un objet représentant une théorie cohomologique généralisée (qui découle du ). Cela signifie que, étant donné une théorie de cohomologie,il existe des espaces tels que l'évaluation de la théorie cohomologique en degré sur un espace équivaut à calculer les classes d'homotopie des morphismes à l'espace , soit encore.Remarquons qu'il existe plusieurs catégories de spectres différentes conduisant à de nombreuses difficultés techniques, mais ils déterminent tous la même , connue sous le nom de catégorie d'homotopie stable.
Diviseur (géométrie algébrique)En mathématiques, plus précisément en géométrie algébrique, les diviseurs sont une généralisation des sous-variétés de codimension 1 de variétés algébriques ; deux généralisations différentes sont d'un usage commun : les diviseurs de Weil et les diviseurs de Cartier. Les deux concepts coïncident dans les cas des variétés non singulières. En géométrie algébrique, comme en géométrie analytique complexe, ou en géométrie arithmétique, les diviseurs forment un groupe qui permet de saisir la nature d'un schéma (une variété algébrique, une surface de Riemann, un anneau de Dedekind.