État fondamentalL'état fondamental est, en physique, une notion polysémique renvoyant généralement à un état de plus basse énergie pour un électron, ou de plus grande neutralité électrique pour un atome.vignette|Différents niveaux d'énergie d'un électron dans un atome : l'état fondamental et les états excités. Après avoir absorbé de l'énergie, un électron peut passer de l'état fondamental à un état excité de plus haute énergie. En physique quantique, les états fondamentaux d'un système sont les états quantiques de plus basse énergie.
Niveau d'énergieUn niveau d'énergie est une quantité utilisée pour décrire les systèmes en mécanique quantique et par extension dans la physique en général, sachant que, s'il y a bien quantification de l'énergie, à un niveau d'énergie donné correspond un « état du système » donné ; à moins que le niveau d'énergie soit dit « dégénéré ». La notion de niveau d'énergie a été proposée en 1913 par le physicien danois Niels Bohr.
État stationnaire (physique quantique)En physique quantique comme dans le cas classique, un état stationnaire est un état qui n’évolue pas dans le temps. Cependant la description mathématique des états est un peu différente. Dans le cas d’un vecteur de norme 1 dans un espace de Hilbert, il peut y avoir un « changement de phase » (dans le sens multiplication par un nombre complexe de module 1). Par ailleurs, s’il est caractérisé par une fonction d’onde alors sa densité de probabilité est indépendante du temps.
Excitation (physique)En physique, on appelle excitation tout phénomène qui sort un système de son état de repos pour l'amener à un état d'énergie supérieure. Le système est alors dans un état excité. Cette notion est particulièrement utilisée en physique quantique, pour laquelle les atomes possèdent des états quantiques associés à des niveaux d'énergie : un système est dans un niveau excité lorsque son énergie est supérieure à celle de l'état fondamental. Un électron excité est un électron qui possède une énergie potentielle supérieure au strict nécessaire.
Liste de théorèmes du point fixeEn analyse, un théorème du point fixe donne des conditions suffisantes d’existence d’un point fixe pour une fonction ou une famille de fonctions. Plus précisément, étant donné un ensemble E et une famille de fonctions f définies sur E et à valeurs dans E, ces théorèmes permettent de justifier qu’il existe un élément x de E tel que pour toutes les fonctions considérées on ait . Certains de ces théorèmes fournissent même un processus itératif permettant d’approcher un tel point fixe.
Point fixeEn mathématiques, pour une application f d'un ensemble E dans lui-même, un élément x de E est un point fixe de f si f(x) = x. Exemples : dans le plan, la symétrie par rapport à un point A admet un unique point fixe : A ; l'application inverse (définie sur l'ensemble des réels non nuls) admet deux points fixes : –1 et 1, solutions de l'équation équivalente à l'équation . Graphiquement, les points fixes d'une fonction f (d'une variable réelle, à valeurs réelles) sont les points d'intersection de la droite d'équation y = x avec la courbe d'équation y = f(x).
Fixed-point iterationIn numerical analysis, fixed-point iteration is a method of computing fixed points of a function. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is which gives rise to the sequence of iterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of , i.e., More generally, the function can be defined on any metric space with values in that same space.
Énergie du point zéroL'énergie du point zéro est la plus faible énergie possible qu'un système physique quantique puisse avoir ; cela correspond à son énergie quand il est dans son état fondamental, c'est-à-dire lorsque toute autre forme d'énergie a été retirée. Tous les systèmes mécaniques quantiques subissent des fluctuations même quand ils sont à leur état fondamental (auquel est associée une énergie du point zéro), une conséquence de leur nature ondulatoire.
Énergie d'ionisationthumb|right|600px|Graphique des premières énergies d'ionisation en eV, en fonction du numéro atomique. L'énergie d'ionisation augmente graduellement des métaux alcalins jusqu'aux gaz nobles. Et dans une colonne donnée du tableau périodique, l'énergie d'ionisation diminue du premier rang jusqu'au dernier, à cause de la distance croissante du noyau jusqu'à la couche des électrons de valence.
Théorème du point fixe de LefschetzEn mathématiques, le théorème du point fixe de Lefschetz est une formule qui compte le nombre de points fixes d'une application continue d'un espace compact X dans lui-même en utilisant les traces des endomorphismes qu'elle induit sur l'homologie de X. Il est nommé d'après Solomon Lefschetz qui l'a démontré en 1926. Chaque point fixe est compté avec sa multiplicité. Une version faible du théorème suffit à démontrer qu'une application qui n'a aucun point fixe doit vérifier certaines propriétés particulières (comme une rotation du cercle).