New variational principles for locating periodic orbits of differential equations
Publications associées (47)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In algorithms for solving optimization problems constrained to a smooth manifold, retractions are a well-established tool to ensure that the iterates stay on the manifold. More recently, it has been demonstrated that retractions are a useful concept for ot ...
This article proposes a dynamical system modeling approach for the analysis of longitudinal data of self-regulated homeostatic systems experiencing multiple excitations. It focuses on the evolution of a signal (e.g., heart rate) before, during, and after e ...
The homotopy continuation method has been widely used to compute multiple solutions of nonlinear differential equations, but the computational cost grows exponentially based on the traditional finite difference and finite element discretizations. In this w ...
Biological oscillators are pervasive in biology, covering all aspects of life from enzyme kinetics reactions to population dynamics. Although their behaviour has been intensively studied in the last decades, the recent advances of high-throughput experimen ...
In this thesis we explore uncertainty quantification of forward and inverse problems involving differential equations. Differential equations are widely employed for modeling natural and social phenomena, with applications in engineering, chemistry, meteor ...
Predicting the evolution of systems with spatio-temporal dynamics in response to external stimuli is essential for scientific progress. Traditional equations-based approaches leverage first principles through the numerical approximation of differential equ ...
Chaotic dynamics in systems ranging from low-dimensional nonlinear differential equations to high-dimensional spatiotemporal systems including fluid turbulence is supported by nonchaotic, exactly recurring time-periodic solutions of the governing equations ...
Stabilized Runge–Kutta (aka Chebyshev) methods are especially efficient for the numerical solution of large systems of stiff differential equations because they are fully explicit; hence, they are inherently parallel and easily accommodate nonlinearity. Fo ...
One approach to understand the chaotic dynamics of nonlinear dissipative systems is the study of non-chaotic yet dynamically unstable invariant solutions embedded in the system's chaotic attractor. The significance of zero-dimensional unstable fixed points ...
The isentropic vortex problem is frequently solved to test the accuracy of numerical methods and verify corresponding code. Unfortunately, its existing solution was derived in the relativistic magnetohydrodynamics by numerically solving an ordinary differe ...