Identités vectoriellesDans cet article, on note pour le produit vectoriel et · pour le produit scalaire. Les identités suivantes peuvent être utiles en analyse vectorielle. (Identité de Binet-Cauchy) Dans cette section, a, b, c et d représentent des vecteurs quelconques de . Dans cet article, les conventions suivantes sont utilisées; à noter que la position (levée ou abaissée) des indices n'a pas, ici, beaucoup d'importance étant donné que l'on travaille dans un contexte euclidien.
Analyse fonctionnelle (mathématiques)L'analyse fonctionnelle est la branche des mathématiques et plus particulièrement de l'analyse qui étudie les espaces de fonctions. Elle prend ses racines historiques dans l'étude des transformations telles que la transformation de Fourier et dans l'étude des équations différentielles ou intégro-différentielles. Le terme fonctionnelle trouve son origine dans le cadre du calcul des variations, pour désigner des fonctions dont les arguments sont des fonctions.
Circle groupIn mathematics, the circle group, denoted by or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers The circle group forms a subgroup of , the multiplicative group of all nonzero complex numbers. Since is abelian, it follows that is as well. A unit complex number in the circle group represents a rotation of the complex plane about the origin and can be parametrized by the angle measure : This is the exponential map for the circle group.
RotationnelL'opérateur rotationnel est un opérateur différentiel aux dérivées partielles qui, à un champ vectoriel tridimensionnel, noté ou , fait correspondre un autre champ noté au choix : ou bien ou bien ou bien ou bien selon les conventions de notations utilisées pour les vecteurs. vignette|Exemple d'un champ de vecteurs ayant un rotationnel uniforme, analogue à un fluide tournant autour d'un point central.
Ensemble absorbantIn functional analysis and related areas of mathematics an absorbing set in a vector space is a set which can be "inflated" or "scaled up" to eventually always include any given point of the vector space. Alternative terms are radial or absorbent set. Every neighborhood of the origin in every topological vector space is an absorbing subset.
Liouville's theorem (conformal mappings)In mathematics, Liouville's theorem, proved by Joseph Liouville in 1850, is a rigidity theorem about conformal mappings in Euclidean space. It states that any smooth conformal mapping on a domain of Rn, where n > 2, can be expressed as a composition of translations, similarities, orthogonal transformations and inversions: they are Möbius transformations (in n dimensions). This theorem severely limits the variety of possible conformal mappings in R3 and higher-dimensional spaces.
PseudovecteurEn physique, un pseudovecteur ou vecteur axial est un vecteur de dimension 3 dont le sens dépend de l'orientation de l'espace. Plus précisément, l'inversion de l'orientation de l'espace se traduit par un changement de sens du pseudovecteur qui est donc changé en son opposé. On parle de pseudovecteurs par opposition aux vecteurs « ordinaires » (dits polaires) qui sont invariants par une telle inversion. Le produit vectoriel de deux vecteurs polaires est l'exemple type du pseudovecteur.
BispinorIn physics, and specifically in quantum field theory, a bispinor is a mathematical construction that is used to describe some of the fundamental particles of nature, including quarks and electrons. It is a specific embodiment of a spinor, specifically constructed so that it is consistent with the requirements of special relativity. Bispinors transform in a certain "spinorial" fashion under the action of the Lorentz group, which describes the symmetries of Minkowski spacetime.
Point de branchementEn analyse complexe, le point de branchement ou point de ramification est un point singulier d'une fonction analytique complexe multiforme, telle que la fonction racine n-ième ou le logarithme complexe. En ce point s'échangent les différentes déterminations. Géométriquement, cette notion délicate est liée à la surface de Riemann associée à la fonction et relève de la question de la monodromie. Pour donner une image, cela correspond à un escalier en colimaçon dont l'axe (réduit à un point) est placé à la singularité, desservant plusieurs (voire une infinité) d'étages.
Identités de GreenEn analyse les identités de Green sont trois identités du calcul vectoriel reliant une intégrale définie dans un volume et celle définie sur le bord de ce volume. Ces relations sont dues à George Green. Soient φ et ψ des fonctions scalaires définies sur le domaine V ⊂ R, limité par le domaine de normale n, orientée vers l'extérieur du domaine, telles que φ soit au moins deux fois différentiables et ψ une fois.