En analyse complexe, le point de branchement ou point de ramification est un point singulier d'une fonction analytique complexe multiforme, telle que la fonction racine n-ième ou le logarithme complexe. En ce point s'échangent les différentes déterminations.
Géométriquement, cette notion délicate est liée à la surface de Riemann associée à la fonction et relève de la question de la monodromie.
Pour donner une image, cela correspond à un escalier en colimaçon dont l'axe (réduit à un point) est placé à la singularité, desservant plusieurs (voire une infinité) d'étages. Dans le cas d'un nombre fini d'étages, l'escalier a une propriété de périodicité : arrivé au dernier étage, on peut continuer à monter et on se retrouve au rez-de-chaussée.
En pratique, il suffit de tourner autour d'un point de branchement pour changer d'« étage ».
Les différents étages sont appelés des feuillets (ou branches). L'ordre du point est égal au nombre de feuillets (branches).
Étant donnés une fonction analytique f et un point singulier isolé a, le point a est un point de branchement lorsque l'image par f d'au moins un lacet entourant a est une courbe non fermée. Le point est dit d'ordre n s'il faut au plus n tours autour de a pour refermer la courbe image. Si la courbe ne se referme jamais quel que soit le nombre de tours effectués autour de a, on dit que le point de branchement est transcendant ou logarithmique.
Le point à l'infini peut être un point de branchement pour f(s). Pour le montrer, on considère la fonction f(1/s). Si 0 est un point de branchement de f(1/s) alors l'infini est un point de branchement de f(s).
Soit f une fonction complexe admettant le point a comme point de branchement d'ordre n. Si a ≠ 0, on se ramène par translation au cas où ce point de branchement est 0. La fonction g définie par g(s) = f(s) est alors analytique en 0. Pour cette fonction g, le point 0 n'est donc pas un point de branchement, ce qui implique qu’elle admet un développement en série de Laurent en 0.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Explore les formes harmoniques sur les surfaces de Riemann, couvrant l'unicité des solutions et l'identité bilinéaire de Riemann.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Ce cours pose les bases d'un concept essentiel en ingénierie : la notion de système. Plus spécifiquement, le cours présente la théorie des systèmes linéaires invariants dans le temps (SLIT), qui sont
Calcul différentiel et intégral.
Eléments d'analyse complexe.
En mathématiques, le logarithme complexe est une fonction généralisant la fonction logarithme naturel (définie sur ]0,+∞[) au domaine C* des nombres complexes non nuls. Plusieurs définitions sont possibles. Aucune ne permet de conserver, à la fois, l'univocité, la continuité et les propriétés algébriques de la fonction logarithme. Histoire des nombres complexes La question de savoir s'il est possible de prolonger le logarithme naturel (c'est-à-dire de le définir sur un ensemble plus grand que ]0,+∞[) s'est posée dès la seconde moitié du avec les développements en série des fonctions.
frame|right|Ce diagramme représente une multifonction : à chaque élément de X on fait correspondre une partie de Y ; ainsi à l'élément 3 de X correspond la partie de Y formée des deux points b et c. En mathématiques, une fonction multivaluée (aussi appelée correspondance, fonction multiforme, fonction multivoque ou simplement multifonction) est une relation binaire quelconque, improprement appelée fonction car non fonctionnelle : à chaque élément d'un ensemble elle associe, non pas au plus un élément mais possiblement zéro, un ou plusieurs éléments d'un second ensemble.
La monodromie est l'étude du comportement de certains objets mathématiques « lorsqu'on tourne autour d'une singularité ». Un premier aspect de ce phénomène se rencontre dans le domaine des fonctions complexes admettant plusieurs déterminations dans le plan complexe épointé, comme le logarithme ou les puissances rationnelles : suivre continument une détermination d'une telle fonction le long d'un lacet autour de l'origine conduit après un tour à obtenir une autre détermination.
Full wavefront control by photonic components requires that the spatial phase modulation on an incoming optical beam ranges from 0 to 2 pi. Because of their radiative coupling to the environment, all optical components are intrinsically non-Hermitian syste ...
Microelectromechanical systems (MEMS) is among the most revolutionary technologies of 21st century, with the applications ranging from industrial systems to consumer electronics. Using MEMS in battery-powered wireless devices has long been seen as the evol ...
In this thesis, we investigate the inverse problem of trees and barcodes from a combinatorial, geometric, probabilistic and statistical point of view.Computing the persistent homology of a merge tree yields a barcode B. Reconstructing a tree from B involve ...