Intégrale de cheminUne 'intégrale de chemin' (« path integral » en anglais) est une intégrale fonctionnelle, c'est-à-dire que l'intégrant est une fonctionnelle et que la somme est prise sur des fonctions, et non sur des nombres réels (ou complexes) comme pour les intégrales ordinaires. On a donc ici affaire à une intégrale en dimension infinie. Ainsi, on distinguera soigneusement l'intégrale de chemin (intégrale fonctionnelle) d'une intégrale ordinaire calculée sur un chemin de l'espace physique, que les mathématiciens appellent intégrale curviligne.
Équilibre thermodynamiquevignette|200px|Exemple d'équilibre thermodynamique de deux systèmes, en l'occurrence deux phases : l'équilibre liquide-vapeur du brome. En thermodynamique, un équilibre thermodynamique correspond à l'état d'un système ne subissant aucune évolution à l'échelle macroscopique. Les grandeurs intensives caractérisant ce système (notamment la pression, la température et les potentiels chimiques) sont alors homogènes dans l'espace et constantes dans le temps.
Système thermodynamiqueEn thermodynamique classique, un système thermodynamique est une portion de l'Univers que l'on isole par la pensée du reste de l'Univers, ce dernier constituant alors le milieu extérieur. Le système thermodynamique n'est pas forcément défini par une frontière matérielle, ni nécessairement connexe. Les gouttes de liquide dans un brouillard, par exemple, définissent un système thermodynamique. Le milieu extérieur considéré est constitué par la portion d'Univers en interaction avec le système étudié.
Mécanique hamiltonienneLa mécanique hamiltonienne est une reformulation de la mécanique newtonienne. Son formalisme a facilité l'élaboration théorique de la mécanique quantique. Elle a été formulée par William Rowan Hamilton en 1833 à partir des équations de Lagrange, qui reformulaient déjà la mécanique classique en 1788. En mécanique lagrangienne, les équations du mouvement d'un système à N degrés de liberté dépendent des coordonnées généralisées et des vitesses correspondantes , où .
Variable aléatoire à densitéEn théorie des probabilités, une variable aléatoire à densité est une variable aléatoire réelle, scalaire ou vectorielle, pour laquelle la probabilité d'appartenance à un domaine se calcule à l'aide d'une intégrale sur ce domaine. La fonction à intégrer est alors appelée « fonction de densité » ou « densité de probabilité », égale (dans le cas réel) à la dérivée de la fonction de répartition. Les densités de probabilité sont les fonctions essentiellement positives et intégrables d'intégrale 1.
Processus thermodynamiqueUn processus thermodynamique, ou une transformation thermodynamique, est une transformation (ou une série de transformations) chimique ou physique d’un système partant d’un état d’équilibre initial pour aboutir à un état d’équilibre final.
Thermodynamic stateIn thermodynamics, a thermodynamic state of a system is its condition at a specific time; that is, fully identified by values of a suitable set of parameters known as state variables, state parameters or thermodynamic variables. Once such a set of values of thermodynamic variables has been specified for a system, the values of all thermodynamic properties of the system are uniquely determined. Usually, by default, a thermodynamic state is taken to be one of thermodynamic equilibrium.
Thermodynamic equationsThermodynamics is expressed by a mathematical framework of thermodynamic equations which relate various thermodynamic quantities and physical properties measured in a laboratory or production process. Thermodynamics is based on a fundamental set of postulates, that became the laws of thermodynamics. One of the fundamental thermodynamic equations is the description of thermodynamic work in analogy to mechanical work, or weight lifted through an elevation against gravity, as defined in 1824 by French physicist Sadi Carnot.
Potentiel thermodynamiqueEn thermodynamique, un potentiel thermodynamique est une fonction d'état particulière qui permet de prédire l'évolution et l'équilibre d'un système thermodynamique, et à partir de laquelle on peut déduire toutes les propriétés (comme les capacités thermiques, le coefficient de dilatation, le coefficient de compressibilité) du système à l'équilibre. Les divers potentiels thermodynamiques correspondent aux divers jeux de variables d'état utilisés dans l'étude des processus thermodynamiques.
Thermodynamique hors équilibreLa thermodynamique hors équilibre est le domaine de recherche étudiant les phénomènes de relaxation et de transport au voisinage de l'équilibre thermodynamique. Il s'agit là de phénomènes dissipatifs donc irréversibles, liés à une augmentation de l'entropie. Les méthodes présentées ici relèvent de la thermodynamique proprement dite, qui permet de donner les lois caractérisant un phénomène.