Valuation using discounted cash flowsValuation using discounted cash flows (DCF valuation) is a method of estimating the current value of a company based on projected future cash flows adjusted for the time value of money. The cash flows are made up of those within the “explicit” forecast period, together with a continuing or terminal value that represents the cash flow stream after the forecast period. In several contexts, DCF valuation is referred to as the "income approach".
Theory of computationIn theoretical computer science and mathematics, the theory of computation is the branch that deals with what problems can be solved on a model of computation, using an algorithm, how efficiently they can be solved or to what degree (e.g., approximate solutions versus precise ones). The field is divided into three major branches: automata theory and formal languages, computability theory, and computational complexity theory, which are linked by the question: "What are the fundamental capabilities and limitations of computers?".
Méthode de Gordon et ShapiroLa méthode de Gordon et Shapiro (en anglais, dividend discount model ou DDM) est un modèle d'actualisation du prix des actions. Il porte le nom de ses auteurs et a été mis au point en 1966. Ce modèle, dit aussi de « croissance perpétuelle », ne tient pas compte des plus values. En effet, il considère que lorsque le flux de dividendes est perpétuel (et donc qu'il tend vers l'infini), la plus value n'a pas d'incidence sur l'évaluation de l'action.
Function problemIn computational complexity theory, a function problem is a computational problem where a single output (of a total function) is expected for every input, but the output is more complex than that of a decision problem. For function problems, the output is not simply 'yes' or 'no'. A functional problem is defined by a relation over strings of an arbitrary alphabet : An algorithm solves if for every input such that there exists a satisfying , the algorithm produces one such , and if there are no such , it rejects.
Valeur actuelle netteLa valeur actuelle nette (VAN, en anglais : net present value, NPV) est une mesure de la rentabilité d'un investissement calculée comme la somme des flux de trésorerie engendrés par cette opération, chacun étant actualisé de façon à réduire son importance dans cette somme à mesure de son éloignement dans le temps. Si le taux d'actualisation est choisi convenablement, l'investissement sera réputé rentable et donc retenu si et seulement si sa valeur actuelle nette est positive.
Langue classiqueEn sociolinguistique, une langue classique est une langue dotée de prestige au sein d'une culture donnée, en tant que porteuse d'une littérature qui y est considérée comme classique : ancienne, fondatrice, digne d'être enseignée et imitée. L'expression s'utilise largement par opposition avec la langue vernaculaire, qui est celle du quotidien. La langue classique peut être une variété de prestige du vernaculaire, ou en être complètement différente.
Valeur temps de l'argentLa valeur temps de l'argent ou valeur temporelle de l'argent est un concept en finance qui veut qu'un montant d'argent reçu ou émis plus tôt vaut davantage qu'un même montant reçu ou émis plus tard. C'est sur la valeur temps de l'argent que s’appuient plusieurs concepts fondamentaux de la finance, notamment l'actualisation et l'intérêt. La valeur temps de l'argent est l'un des facteurs considérés dans le calcul du coût d'opportunité à savoir s'il est préférable de dépenser, d'épargner ou d'investir un montant.
Present valueIn economics and finance, present value (PV), also known as present discounted value, is the value of an expected income stream determined as of the date of valuation. The present value is usually less than the future value because money has interest-earning potential, a characteristic referred to as the time value of money, except during times of zero- or negative interest rates, when the present value will be equal or more than the future value. Time value can be described with the simplified phrase, "A dollar today is worth more than a dollar tomorrow".
Monoïde syntaxiqueEn informatique théorique, et en particulier dans la théorie des automates finis, le monoïde syntaxique d'un langage formel est un monoïde naturellement attaché au langage. L'étude de ce monoïde permet de refléter certaines propriétés combinatoires du langage par des caractéristiques algébriques du monoïde. L'exemple le plus célèbre de cette relation est la caractérisation, due à Marcel-Paul Schützenberger, des langages rationnels sans étoile (que l'on peut décrire par des expressions rationnelles avec complément mais sans l'étoile de Kleene) : ce sont les langages dont le monoïde syntaxique est fini et apériodique, c'est-à-dire ne contient pas de sous-groupe non trivial.
Simulation de phénomènesLa simulation de phénomènes est un outil utilisé dans le domaine de la recherche et du développement. Elle permet d'étudier les réactions d'un système à différentes contraintes pour en déduire les résultats recherchés en se passant d'expérimentation. Les systèmes technologiques (infrastructures, véhicules, réseaux de communication, de transport ou d'énergie) sont soumis à différentes contraintes et actions. Le moyen le plus simple d'étudier leurs réactions serait d'expérimenter, c'est-à-dire d'exercer l'action souhaitée sur l'élément en cause pour observer ou mesurer le résultat.