Équations de Boussinesqthumb|right|250px|Ondes de gravité à l'entrée d'un port (milieu à profondeur variable). Les équations de Boussinesq en mécanique des fluides désignent un système d'équations d'ondes obtenu par approximation des équations d'Euler pour des écoulements incompressibles irrotationnels à surface libre. Elles permettent de prévoir les ondes de gravité comme ondes cnoïdales, ondes de Stokes, houle, tsunamis, solitons, etc. Ces équations ont été introduites par Joseph Boussinesq en 1872 et sont un exemple d'équations aux dérivées partielles dispersives.
Imagerie médicaleL'imagerie médicale regroupe les moyens d'acquisition et de restitution d'images du corps humain à partir de différents phénomènes physiques tels que l'absorption des rayons X, la résonance magnétique nucléaire, la réflexion d'ondes ultrasons ou la radioactivité auxquels on associe parfois les techniques d'imagerie optique comme l'endoscopie. Apparues, pour les plus anciennes, au tournant du , ces techniques ont révolutionné la médecine grâce au progrès de l'informatique en permettant de visualiser indirectement l'anatomie, la physiologie ou le métabolisme du corps humain.
Lie bracket of vector fieldsIn the mathematical field of differential topology, the Lie bracket of vector fields, also known as the Jacobi–Lie bracket or the commutator of vector fields, is an operator that assigns to any two vector fields X and Y on a smooth manifold M a third vector field denoted [X, Y]. Conceptually, the Lie bracket [X, Y] is the derivative of Y along the flow generated by X, and is sometimes denoted ("Lie derivative of Y along X"). This generalizes to the Lie derivative of any tensor field along the flow generated by X.
Théorème de Bernoullivignette|Observations à l'aide d'un tube de Venturi illustrant le théorème de Bernoulli En mécanique des fluides, le est un principe de conservation de l'énergie sous certaines hypothèses de l'écoulement, établi en par Daniel Bernoulli. C'est un résultat historique dans le développement de la dynamique des fluides. S’il est initialement utilisé pour des fluides en circulation dans une conduite, il trouve un important champ d'application en aérodynamique.
Transformations de GaliléeEn physique, une transformation de Galilée correspond aux formules de transformations des coordonnées spatiales et temporelle entre deux référentiels galiléens donnés. Tout référentiel en mouvement de translation rectiligne et uniforme par rapport à un référentiel donné supposé galiléen, est lui-même galiléen. Une telle transformation laisse invariantes les équations de la mécanique newtonienne, mais pas celles de la dynamique relativiste ou les équations de Maxwell.
Circular definitionA circular definition is a type of definition that uses the term(s) being defined as part of the description or assumes that the term(s) being described are already known. There are several kinds of circular definition, and several ways of characterising the term: pragmatic, lexicographic and linguistic. Circular definitions are related to Circular reasoning in that they both involve a self-referential approach. Circular definitions may be unhelpful if the audience must either already know the meaning of the key term, or if the term to be defined is used in the definition itself.
PseudoscalaireEn physique, un pseudoscalaire est une grandeur physique représentée par un nombre, qui se présente donc comme un scalaire, mais qui change de signe lorsque le système physique subit une symétrie ou une inversion polaire. En physique, on parle aussi de particules pseudoscalaires, par abus de langage, puisqu'en réalité ce n'est que l'une des propriétés de la particule, telle que la charge, qui est une quantité pseudoscalaire. Le produit scalaire d'un vecteur et d'un pseudovecteur est un pseudoscalaire.
Quaternionvignette|Plaque commémorative de la naissance des quaternions sur le pont de Broom (Dublin). En mathématiques, un quaternion est un nombre dans un sens généralisé. Les quaternions englobent les nombres réels et complexes dans un système de nombres plus vastes où la multiplication n'est cette fois-ci plus une loi commutative. Les quaternions furent introduits par le mathématicien irlandais William Rowan Hamilton en 1843. Ils trouvent aujourd'hui des applications en mathématiques, en physique, en informatique et en sciences de l'ingénieur.
Rough pathIn stochastic analysis, a rough path is a generalization of the notion of smooth path allowing to construct a robust solution theory for controlled differential equations driven by classically irregular signals, for example a Wiener process. The theory was developed in the 1990s by Terry Lyons. Several accounts of the theory are available. Rough path theory is focused on capturing and making precise the interactions between highly oscillatory and non-linear systems. It builds upon the harmonic analysis of L.
Médaille FieldsLa médaille Fields est la plus prestigieuse récompense en mathématiques avec le prix Abel. Elle est considérée comme équivalente à un prix Nobel inexistant pour cette discipline. Elle est attribuée tous les quatre ans depuis 1936 au cours du congrès international des mathématiciens à quatre mathématiciens au plus, tous de moins de . Les lauréats reçoivent chacun une médaille et . John Charles Fields, mathématicien canadien, propose la création de cette médaille en 1923 lors d'une réunion internationale à Toronto.