Digital image processingDigital image processing is the use of a digital computer to process s through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over . It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems.
Boundary conditions in fluid dynamicsBoundary conditions in fluid dynamics are the set of constraints to boundary value problems in computational fluid dynamics. These boundary conditions include inlet boundary conditions, outlet boundary conditions, wall boundary conditions, constant pressure boundary conditions, axisymmetric boundary conditions, symmetric boundary conditions, and periodic or cyclic boundary conditions. Transient problems require one more thing i.e., initial conditions where initial values of flow variables are specified at nodes in the flow domain.
Medical image computingMedical image computing (MIC) is an interdisciplinary field at the intersection of computer science, information engineering, electrical engineering, physics, mathematics and medicine. This field develops computational and mathematical methods for solving problems pertaining to medical images and their use for biomedical research and clinical care. The main goal of MIC is to extract clinically relevant information or knowledge from medical images.
Matrice d'une application linéaireEn algèbre linéaire, la matrice d'une application linéaire est une matrice de scalaires qui permet de représenter une application linéaire entre deux espaces vectoriels de dimensions finies, étant donné le choix d'une base pour chacun d'eux. Soient : E et F deux espaces vectoriels sur un corps commutatif K, de dimensions respectives n et m ; B = (e, ... , e) une base de E, C une base de F ; φ une application de E dans F.
Vecteurdroite|cadre|Deux vecteurs et et leur vecteur somme. En mathématiques, un vecteur est un objet généralisant plusieurs notions provenant de la géométrie (couples de points, translations, etc.), de l'algèbre (« solution » d'un système d'équations à plusieurs inconnues), ou de la physique (forces, vitesses, accélérations). Rigoureusement axiomatisée, la notion de vecteur est le fondement de la branche des mathématiques appelée algèbre linéaire.
Identités vectoriellesDans cet article, on note pour le produit vectoriel et · pour le produit scalaire. Les identités suivantes peuvent être utiles en analyse vectorielle. (Identité de Binet-Cauchy) Dans cette section, a, b, c et d représentent des vecteurs quelconques de . Dans cet article, les conventions suivantes sont utilisées; à noter que la position (levée ou abaissée) des indices n'a pas, ici, beaucoup d'importance étant donné que l'on travaille dans un contexte euclidien.
Dimension d'un espace vectorielvignette|espace à zéro dimension. En algèbre linéaire, la dimension de Hamel ou simplement la dimension est un invariant associé à tout espace vectoriel E sur un corps K. La dimension de E est le cardinal commun à toutes ses bases. Ce nombre est noté dimK(E) (lire « dimension de E sur K ») ou dim(E) (s'il n'y a aucune confusion sur le corps K des scalaires). Si E admet une partie génératrice finie, alors sa dimension est finie et elle vaut le nombre de vecteurs constituant une base de E.
DéfinitionUne définition est une proposition qui met en équivalence un élément définissant et un élément étant défini. Une définition a pour but de clarifier, d'expliquer. Elle détermine les limites ou « un ensemble de traits qui circonscrivent un objet ». Selon les Définitions du pseudo-Platon, la définition est la . Aristote, dans le Topiques, définit le mot comme En mathématiques, on définit une notion à partir de notions antérieurement définies. Les notions de bases étant les symboles non logiques du langage considéré, dont l'usage est défini par les axiomes de la théorie.
Chimie physiqueLa chimie physique est l’étude des bases physiques des systèmes chimiques et des procédés. En particulier, la description énergétique des diverses transformations fait partie de la chimie physique. Elle fait appel à des disciplines importantes comme la thermodynamique chimique (ou thermochimie), la cinétique chimique, la mécanique statistique, la spectroscopie et l’électrochimie.
Constante physiquevignette|Dépendances des constantes définissant les unités du SI depuis 2019. Ici, a → b signifie que a est utilisé pour définir b. En science, une constante physique est une quantité physique dont la valeur numérique est fixe. Contrairement à une constante mathématique, elle implique directement une grandeur physiquement mesurable. Les valeurs listées ci-dessous sont des valeurs dont on a remarqué qu'elles semblaient constantes et indépendantes de tous paramètres utilisés, et que la théorie suppose donc réellement constantes.