Fidelity of quantum statesIn quantum mechanics, notably in quantum information theory, fidelity is a measure of the "closeness" of two quantum states. It expresses the probability that one state will pass a test to identify as the other. The fidelity is not a metric on the space of density matrices, but it can be used to define the Bures metric on this space. Given two density operators and , the fidelity is generally defined as the quantity . In the special case where and represent pure quantum states, namely, and , the definition reduces to the squared overlap between the states: .
Chimie numériqueLa chimie numérique ou chimie informatique, parfois aussi chimie computationnelle, est une branche de la chimie et de la physico-chimie qui utilise les lois de la chimie théorique exploitées dans des programmes informatiques spécifiques afin de calculer structures et propriétés d'objets chimiques tels que les molécules, les solides, les agrégats atomiques (ou clusters), les surfaces, etc., en appliquant autant que possible ces programmes à des problèmes chimiques réels.
Trapped ion quantum computerA trapped ion quantum computer is one proposed approach to a large-scale quantum computer. Ions, or charged atomic particles, can be confined and suspended in free space using electromagnetic fields. Qubits are stored in stable electronic states of each ion, and quantum information can be transferred through the collective quantized motion of the ions in a shared trap (interacting through the Coulomb force).
Porte quantiqueEn informatique quantique, et plus précisément dans le modèle de de calcul, une porte quantique (ou porte logique quantique) est un circuit quantique élémentaire opérant sur un petit nombre de qubits. Les portes quantiques sont les briques de base des circuits quantiques, comme le sont les portes logiques classiques pour des circuits numériques classiques. Contrairement à de nombreuses portes logiques classiques, les portes logiques quantique sont « réversibles ».
Théorie des représentationsLa théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.
Suprématie quantiqueLa suprématie quantique, aussi appelée avantage quantique, désigne le nombre de qubits au-delà duquel plus aucun superordinateur classique n'est capable de gérer la croissance exponentielle de la mémoire et la bande passante de communication nécessaire pour simuler son équivalent quantique. Les superordinateurs de 2017 peuvent reproduire les résultats d'un ordinateur quantique de , mais à partir de cela devient physiquement impossible. Le seuil d'environ 50 qubits correspond à la limite théorique de la suprématie quantique.
Représentation de groupeEn mathématiques, une représentation de groupe décrit un groupe en le faisant agir sur un espace vectoriel de manière linéaire. Autrement dit, on essaie de voir le groupe comme un groupe de matrices, d'où le terme représentation. On peut ainsi, à partir des propriétés relativement bien connues du groupe des automorphismes de l'espace vectoriel, arriver à déduire quelques propriétés du groupe. C'est l'un des concepts importants de la théorie des représentations.
Représentation irréductibleEn mathématiques et plus précisément en théorie des représentations, une représentation irréductible est une représentation non nulle qui n'admet qu'elle-même et la représentation nulle comme sous-représentations. Le présent article traite des représentations d'un groupe. Le théorème de Maschke démontre que dans de nombreux cas, une représentation est somme directe de représentations irréductibles. Dans le cas des groupes finis, les informations liés aux représentations irréductibles sont encodées dans la table de caractères du groupe.
Intersection coniquethumb|Intersection conique idéale entre deux surfaces d'énergie potentielle. Les axes horizontaux représentent les positions nucléaires, l'axe vertical est l'énergie des deux états possibles. En chimie quantique, une intersection conique de deux surfaces d'énergie potentielle (SEP) de mêmes symétries spatiales et de spin est l'ensemble des points géométriques où deux SEP sont dégénérées (se croisent). Les intersections coniques se rencontrent dans tous les systèmes chimiques triviaux et non triviaux.
Algebra representationIn abstract algebra, a representation of an associative algebra is a module for that algebra. Here an associative algebra is a (not necessarily unital) ring. If the algebra is not unital, it may be made so in a standard way (see the adjoint functors page); there is no essential difference between modules for the resulting unital ring, in which the identity acts by the identity mapping, and representations of the algebra.