Résumé
En mathématiques, une représentation de groupe décrit un groupe en le faisant agir sur un espace vectoriel de manière linéaire. Autrement dit, on essaie de voir le groupe comme un groupe de matrices, d'où le terme représentation. On peut ainsi, à partir des propriétés relativement bien connues du groupe des automorphismes de l'espace vectoriel, arriver à déduire quelques propriétés du groupe. C'est l'un des concepts importants de la théorie des représentations. Un groupe est une structure algébrique composée d'éléments, que l'on peut "additionner" (opération abstraite, cette "addition" n'est pas forcément commutative, mais peut l'être), il y a un élément neutre, et tout élément possède un inverse. Un exemple typique est l'ensemble des entiers modulo 12. On peut additionner les nombres : 2+5 = 7 ; 5+9 = 2 (car 14 et 2 sont égaux modulo 12). Tout élément a un inverse : par exemple l'inverse de 2 est 10 car 2+10=0. Une représentation est une façon géométrique de voir le groupe dans un espace, par exemple en deux dimensions. Plus précisément, chaque élément du groupe se voit comme une opération vectorielle (symétrie / rotation autour de l'origine). Imaginons une horloge avec l'aiguille des heures. Chaque nombre x modulo 12 correspond à tourner de x heures, comme le montre la table suivante : On remarque que l'addition, par exemple 2+3 = 5, se traduit par la succession de deux opérations : avancer l'aiguille de 2 heures, puis de 3 heures correspond à l'avancer de 5 heures. La table ci-dessus est un morphisme de groupe et elle est un exemple de représentation du groupes des entiers modulo 12. Bien sûr, il y a plein de groupes différents, et pour chacun d'eux plusieurs représentations possibles dans des espaces de dimension finie, voire infinie. La section suivante présente la définition formelle d'une représentation d'un groupe G quelconque. Soit G un groupe, K un corps commutatif et V un espace vectoriel sur K. On appelle représentation du groupe G une action linéaire de G sur V, autrement dit un morphisme de groupes de G dans le groupe linéaire GL(V).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.