Dedekind-infinite setIn mathematics, a set A is Dedekind-infinite (named after the German mathematician Richard Dedekind) if some proper subset B of A is equinumerous to A. Explicitly, this means that there exists a bijective function from A onto some proper subset B of A. A set is Dedekind-finite if it is not Dedekind-infinite (i.e., no such bijection exists). Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the natural numbers.
Union (mathématiques)Dans la théorie des ensembles, l'union ou réunion est une opération ensembliste de base. En algèbre booléenne, l'union est associée à l'opérateur logique ou inclusif et est notée ∪. L'union de deux ensembles A et B est l'ensemble qui contient tous les éléments qui appartiennent à A ou appartiennent à B. On la note A ∪ B et on la dit « A union B » Formellement : Par exemple l'union des ensembles A = {1, 2, 3} et B = {2, 3, 4} est l'ensemble {1, 2, 3, 4}.
Ensemblevignette|Ensemble de polygones dans un diagramme d'Euler En mathématiques, un ensemble désigne intuitivement un rassemblement d’objets distincts (les éléments de l'ensemble), « une multitude qui peut être comprise comme une totalité » pour paraphraser Georg Cantor qui est à l'origine de la théorie des ensembles. Dans une approche axiomatique, la théorie des ensembles est une théorie de l'appartenance (un élément d'un ensemble est dit « appartenir » à cet ensemble).
Sigma additivitévignette|Illustration de la sigma additivité La sigma additivité, appelé aussi additivité dénombrable, est un concept en théorie de la mesure. Soit un ensemble et un ensemble de parties de . On dit que l'application μ est σ-additive sur lorsqu'elle vérifie la propriété suivante : si E1, E2, ... est une suite d'éléments de , si ces parties de sont deux à deux disjointes et si leur réunion E est aussi un élément de , alors la valeur μ(E) de μ sur cette réunion E est égale à la somme des valeurs de μ sur les parties Ek : Il s'agit d'une version plus forte de l'additivité simple.
Mesure sigma-finieSoit (X, Σ, μ) un espace mesuré. On dit que la mesure μ est σ-finie lorsqu'il existe un recouvrement dénombrable de X par des sous-ensembles de mesure finie, c'est-à-dire lorsqu'il existe une suite (E) d'éléments de la tribu Σ, tous de mesure finie, avec Mesure finie Mesure de comptage sur un ensemble dénombrable Mesure de Lebesgue. En effet, l'ensemble des intervalles pour tous les nombres entiers est un recouvrement dénombrable de , et chacun des intervalles est de mesure 1.
Compresseur (audio)vignette|upright|Un rack de compresseurs analogiques dans un studio d'enregistrement Un compresseur est un appareil de traitement du son destiné à réduire la dynamique du signal. C'est un effet audio qui réduit le niveau des parties du signal qui dépassent durablement un seuil déterminé par l'utilisateur. Les compresseurs se présentent sous forme matérielle comme une unité rackable, une pédale d'effet, un module intégré à une console de mixage analogique, ou sous forme logicielle comme plug-in audio de station audio-numérique.
Hasardvignette|Les jeux de dés sont des symboles du hasard (jeux de hasard). vignette|Tyché ou Fortuna et sa corne d'abondance (fortune, hasard, en grec ancien, sort en latin) déesse allégorique gréco-romaine de la chance, des coïncidences, de la fortune, de la prospérité, de la destinée...|alt= Le hasard est le principe déclencheur d'événements non liés à une cause connue. Il peut être synonyme de l'« imprévisibilité », de l'« imprédictibilité », de fortune ou de destin.
Ordre totalEn mathématiques, on appelle relation d'ordre total sur un ensemble E toute relation d'ordre ≤ pour laquelle deux éléments de E sont toujours comparables, c'est-à-dire que On dit alors que E est totalement ordonné par ≤. Une relation binaire ≤ sur un ensemble E est un ordre total si (pour tous éléments x, y et z de E) : x ≤ x (réflexivité) ; si x ≤ y et y ≤ x, alors x = y (antisymétrie) ; si x ≤ y et y ≤ z, alors x ≤ z (transitivité) ; x ≤ y ou y ≤ x (totalité). Les trois premières propriétés sont celles faisant de ≤ une relation d'ordre.
État stationnaire (physique quantique)En physique quantique comme dans le cas classique, un état stationnaire est un état qui n’évolue pas dans le temps. Cependant la description mathématique des états est un peu différente. Dans le cas d’un vecteur de norme 1 dans un espace de Hilbert, il peut y avoir un « changement de phase » (dans le sens multiplication par un nombre complexe de module 1). Par ailleurs, s’il est caractérisé par une fonction d’onde alors sa densité de probabilité est indépendante du temps.
Théorie de l'état de transitionthumb|Figure 1 : diagramme de réaction pour une réaction de substitution nucléophile bimoléculaire (SN2) entre le bromométhane et l'anion hydroxyde|400px La théorie de l'état de transition (en anglais transition state theory - TST) a pour objectif d'expliquer les cinétiques de réaction pour des réactions chimiques élémentaires. Cette théorie postule l'existence d'un genre spécial d'équilibre chimique, le quasi-équilibre, entre les réactifs et un complexe de transition activé.