Intégration (mathématiques)En mathématiques, l'intégration ou calcul intégral est l'une des deux branches du calcul infinitésimal, l'autre étant le calcul différentiel. Les intégrales sont utilisées dans de multiples disciplines scientifiques notamment en physique pour des opérations de mesure de grandeurs (longueur d'une courbe, aire, volume, flux) ou en probabilités. Ses utilités pluridisciplinaires en font un outil scientifique fondamental. C'est la raison pour laquelle l'intégration est souvent abordée dès l'enseignement secondaire.
Équation intégraleUne équation intégrale est une équation où la fonction inconnue est à l'intérieur d'une intégrale. Elles sont importantes dans plusieurs domaines physiques. Les équations de Maxwell sont probablement leurs plus célèbres représentantes. Elles apparaissent dans des problèmes des transferts d'énergie radiative et des problèmes d'oscillations d'une corde, d'une membrane ou d'un axe. Les problèmes d'oscillation peuvent aussi être résolus à l'aide d'équations différentielles.
Réaction chimiqueUne réaction chimique est une transformation de la matière au cours de laquelle les espèces chimiques qui constituent la matière sont modifiées. Les espèces qui sont consommées sont appelées réactifs ; les espèces formées au cours de la réaction sont appelées produits. Depuis les travaux de Lavoisier (1777), les scientifiques savent que la réaction chimique se fait sans variation mesurable de la masse : , qui traduit la conservation de la masse. thumb|La réaction aluminothermique est une oxydo-réduction spectaculaire.
Point estimationIn statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference.
Réaction d'éliminationEn chimie organique, une élimination (ou β-élimination) est une réaction organique qui transforme un alcane substitué (halogénoalcanes, alcools...) en dérivé éthylénique, voire en alcène, si la molécule de départ, outre le groupe partant, n'est qu'une chaîne carbonée de type alcane. Les conditions sont, en plus dures, celles d'une substitution nucléophile, réaction proche par de nombreux aspects et concurrente : l'élimination se produit en présence d'une base forte et en chauffant le mélange réactionnel.
Équation intégrale de FredholmEn mathématiques, l'équation intégrale de Fredholm est une équation intégrale étudiée par Ivar Fredholm. La caractéristique principale d'une équation de Fredholm est que les bornes d'intégration sont constantes. Son étude donne naissance à la , à l'étude des et des opérateurs de Fredholm. Il s'agit d'une équation intégrale de la forme : La notation est celle d'Arfken et Weber. Ici la fonction inconnue est Φ, tandis que f et K sont des fonctions connues. La fonction de deux variables K est souvent appelée la fonction opérateur intégral du noyau.
Gaz de pétrole liquéfiéLe gaz de pétrole liquéfié, abrégé en GPL (appellation utilisée en France et en Suisse) ou LPG (dans les autres pays francophones, tels que la Belgique et le Luxembourg), est un mélange d'hydrocarbures légers, stocké à l'état liquide et issu du raffinage du pétrole pour 40 % et de traitement du gaz naturel pour 60 %. Les hydrocarbures constituant le GPL, dans son appellation officielle, sont essentiellement le propane et le butane ; le mélange peut contenir jusqu'à 0,5 % d'autres hydrocarbures légers tels que le butadiène.
Intégrale impropreEn mathématiques, lintégrale impropre (ou intégrale généralisée) désigne une extension de l'intégrale usuelle, définie par une forme de passage à la limite dans des intégrales. On note en général les intégrales impropres sans les distinguer des véritables intégrales ou intégrales définies, ainsi : est un exemple classique d'intégrale impropre convergente, mais qui n'est pas définie au sens des théories de l'intégration usuelles (que ce soit l'intégration des fonctions continues par morceaux, l'intégrale de Riemann ou celle de Lebesgue ; une exception notable est la théorie de l'intégration de Kurzweil-Henstock).
Intégrale multiplevignette|Fig. 2. Intégrale double comme volume du solide situé entre un domaine du plan xy et la surface image de ce domaine par une fonction. En analyse mathématique, l'intégrale multiple est une forme d'intégrale qui s'applique aux fonctions de plusieurs variables réelles. Les deux principaux outils de calcul sont le changement de variables et le théorème de Fubini. Ce dernier permet de ramener de proche en proche un calcul d'intégrale multiple à des calculs d'intégrales simples, et d'interpréter le « volume » d'un domaine « simple » de dimension n (ou son hypervolume si n > 3) comme l'intégrale d'une fonction de n – 1 variables (Fig.
CalorimétrieLa calorimétrie est la partie de la thermodynamique qui a pour objet le calcul et la mesure des chaleurs. Pour que la chaleur soit accessible par le calcul, il est nécessaire de l'identifier à la variation d'une fonction d'état, ce qui n'est pas possible dans un cas général. On choisit des conditions particulières dans lesquelles cette identification est possible : par exemple à pression constante, et dans ce cas les chaleurs mises en jeu au sein du calorimètre sont égales à la variation de l'enthalpie ΔH = QP, ou à volume constant dans une bombe calorimétrique, et dans ce cas les chaleurs mises en jeu sont égales à la variation de l'énergie interne ΔU = QV.