Analytic function of a matrixIn mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size. This is used for defining the exponential of a matrix, which is involved in the closed-form solution of systems of linear differential equations. There are several techniques for lifting a real function to a square matrix function such that interesting properties are maintained. All of the following techniques yield the same matrix function, but the domains on which the function is defined may differ.
State space (computer science)In computer science, a state space is a discrete space representing the set of all possible configurations of a "system". It is a useful abstraction for reasoning about the behavior of a given system and is widely used in the fields of artificial intelligence and game theory. For instance, the toy problem Vacuum World has a discrete finite state space in which there are a limited set of configurations that the vacuum and dirt can be in. A "counter" system, where states are the natural numbers starting at 1 and are incremented over time has an infinite discrete state space.
Optimisation convexevignette|320x320px|Optimisation convexe dans un espace en deux dimensions dans un espace contraint L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive). La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions.
Robustesse (ingénierie)En ingénierie, la robustesse d'un système se définit comme la « stabilité de sa performance ». On distingue trois types de systèmes : les systèmes non-performants, qui ne remplissent pas les fonctionnalités attendues par l'utilisateur ; les systèmes performants fragiles, qui sont performants mais uniquement pour une plage réduite des paramètres internes ou externes ; les systèmes performants robustes, qui restent performants malgré des conditions externes présentant de larges variations d'amplitude (exemple : variation de température, d'adhérence au sol, de dispersion d'usinage.
Optimisation linéairethumb|upright=0.5|Optimisation linéaire dans un espace à deux dimensions (x1, x2). La fonction-coût fc est représentée par les lignes de niveau bleues à gauche et par le plan bleu à droite. L'ensemble admissible E est le pentagone vert. En optimisation mathématique, un problème d'optimisation linéaire demande de minimiser une fonction linéaire sur un polyèdre convexe. La fonction que l'on minimise ainsi que les contraintes sont décrites par des fonctions linéaires, d'où le nom donné à ces problèmes.
Théorie de la stabilitéEn mathématiques, la théorie de la stabilité traite la stabilité des solutions d'équations différentielles et des trajectoires des systèmes dynamiques sous des petites perturbations des conditions initiales. L'équation de la chaleur, par exemple, est une équation aux dérivées partielles stable parce que des petites perturbations des conditions initiales conduisent à des faibles variations de la température à un temps ultérieur en raison du principe du maximum.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Régulateur PIDLe régulateur PID, appelé aussi correcteur PID (proportionnel, intégral, dérivé) est un système de contrôle permettant d’améliorer les performances d'un asservissement, c'est-à-dire un système ou procédé en boucle fermée. C’est le régulateur le plus utilisé dans l’industrie où ses qualités de correction s'appliquent à de multiples grandeurs physiques. Le premier régulateur proportionnel à avoir été utilisé est probablement le régulateur à boules qui utilise des masses tournantes pour réguler une vitesse de rotation.
Commande prédictiveLa commande prédictive (ou compensation ou correction anticipatrice) est une technique de commande avancée de l’automatique. Elle a pour objectif de commander des systèmes industriels complexes. Le principe de cette technique est d'utiliser un modèle dynamique du processus à l'intérieur du contrôleur en temps réel afin d'anticiper le futur comportement du procédé. La commande prédictive fait partie des techniques de contrôle à modèle interne (IMC: Internal Model Controler).
SystèmeUn système est un ensemble d' interagissant entre eux selon certains principes ou règles. Par exemple une molécule, le système solaire, une ruche, une société humaine, un parti, une armée etc. Un système est déterminé par : sa frontière, c'est-à-dire le critère d'appartenance au système (déterminant si une entité appartient au système ou fait au contraire partie de son environnement) ; ses interactions avec son environnement ; ses fonctions (qui définissent le comportement des entités faisant partie du système, leur organisation et leurs interactions) ; Certains systèmes peuvent également avoir une mission (ses objectifs et sa raison d'être) ou des ressources, qui peuvent être de natures différentes (humaine, naturelle, matérielle, immatérielle.